Evaluation of ratio of two binomial expression
First of all, let us prove that $$A=\frac 14\left(\binom{200}{102}-\binom{100}{51}\right)$$
Proof :
Let us define $C,D,E$ as follows : $$C:= \binom{100}{99}\binom{100}{3}+\binom{100}{95}\binom{100}{7}+\cdots+\binom{100}{3}\binom{100}{99} $$
$$D:= \binom{100}{98} \binom{100}{4}+\binom{100}{94}\binom{100}{8}+\cdots +\binom{100}{2} \binom{100}{100} $$
$$E:= \binom{100}{97}\binom{100}{5}+\binom{100}{93} \binom{100}{9}+\cdots+\binom{100}{5} \binom{100}{97} $$
We get $$A+C+D+E=\sum_{k=0}^{98}\binom{100}{100-k}\binom{100}{2+k}=[x^{102}](1+x)^{200}=\binom{200}{102}\tag1$$
Next, considering $(1+ix)^{100}$ and $(1-ix)^{100}$, we get
$$A-C+D-E=-[x^{102}](1+ix)^{100}(1-ix)^{100}=-[x^{102}](1+x^2)^{100}=-\binom{100}{51}\tag2$$
Also, considering $\left(1+\frac{1+i}{\sqrt 2}x\right)^{100}$ and $\left(1+\frac{1-i}{\sqrt 2}x\right)^{100}$, we get
$$C-E+i(A-D)=[x^{102}]\left(1+\frac{1+i}{\sqrt 2}x\right)^{100}\left(1+\frac{1-i}{\sqrt 2}x\right)^{100}=[x^{102}](1+\sqrt 2x+x^2)^{100}$$ from which $$A-D=0\tag3$$ follows.
It follows from $(1)(2)(3)$ that
$$A=\sum_{k=0}^{24}\binom{100}{4k}\binom{100}{4k+2}=\frac 14\left(\binom{200}{102}-\binom{100}{51}\right)$$
Next, let us prove that $$B=2^{197}-2^{98}$$
Proof :
Let us consider the following sums :
$$\binom n0+\binom n1+\binom n2+\binom n3+\binom n4+\cdots +\binom nn=2^n$$
$$\binom n0-\binom n1+\binom n2-\binom n3+\binom n4-\cdots +(-1)^n\binom nn=0$$
$$-\left(\binom n0+\binom n1i-\binom n2-\binom n3i+\binom n4+\cdots\right)=-(1+i)^n$$
$$-\left(\binom n0-\binom n1i-\binom n2+\binom n3i+\binom n4-\cdots\right)=-(1-i)^n$$
$$-i\left(\binom n0+\binom n1\frac{1+i}{\sqrt 2}+\binom n2i+\frac{-1+i}{\sqrt 2}\binom n3-\binom n4+\cdots\right)=-i\left(1+\frac{1+i}{\sqrt 2}\right)^n$$
$$-i\left(\binom n0-\binom n1\frac{1+i}{\sqrt 2}+\binom n2i-\frac{-1+i}{\sqrt 2}\binom n3-\binom n4+\cdots\right)=-i\left(1-\frac{1+i}{\sqrt 2}\right)^n$$
$$i\left(\binom n0+\frac{1-i}{\sqrt 2}\binom n1-\binom n2i-\frac{1+i}{\sqrt 2}\binom n3-\binom n4+\cdots\right)=i\left(1+\frac{1-i}{\sqrt 2}\right)^n$$
$$i\left(\binom n0-\frac{1-i}{\sqrt 2}\binom n1-\binom n2i+\frac{1+i}{\sqrt 2}\binom n3-\binom n4+\cdots\right)=i\left(1-\frac{1-i}{\sqrt 2}\right)^n$$
Adding these gives
$$8\left(\binom n2+\binom n{10}+\binom n{18}+\cdots \right)$$ $$=2^n-(1+i)^n-(1-i)^n-i\left(1+\frac{1+i}{\sqrt 2}\right)^n-i\left(1-\frac{1+i}{\sqrt 2}\right)^n$$ $$+i\left(1+\frac{1-i}{\sqrt 2}\right)^n+i\left(1-\frac{1-i}{\sqrt 2}\right)^n$$ $$=2^n-2\cdot 2^{n/2}\cos(n\pi/4)-i(2+\sqrt 2)^{n/2}(\cos(n\pi/8)+i\sin(n\pi/8))$$ $$-i(2-\sqrt 2)^{n/2}(\cos(3n\pi/8)-i\sin(3n\pi/8))$$ $$+i(2+\sqrt 2)^{n/2}(\cos(n\pi/8)-i\sin(n\pi/8))$$ $$+i(2-\sqrt 2)^{n/2}(\cos(3n\pi/8)+i\sin(3n\pi/8))$$
$$=2^n-2\cdot 2^{n/2}\cos(n\pi/4)+2(2+\sqrt 2)^{n/2}(\sin(n\pi/8))$$ $$-2(2-\sqrt 2)^{n/2}(\sin(3n\pi/8))$$
from which we have $$\binom n2+\binom n{10}+\binom n{18}+\cdots $$ $$=2^{n-3}-2^{\frac{n-4}{2}}\cos\left(\frac{n\pi}{4}\right)+\frac 14(2+\sqrt 2)^{n/2}\sin\left(\frac{n\pi}{8}\right)-\frac 14(2-\sqrt 2)^{n/2}\sin\left(\frac{3n\pi}{8}\right)$$
For $n=200$, we have $\cos\left(\frac{n\pi}{4}\right)=1$ and $\sin\left(\frac{n\pi}{8}\right)=\sin\left(\frac{3n\pi}{8}\right)=0$, so $$B=\sum_{k=1}^{25}\binom{200}{8k-6}=2^{197}-2^{98}$$
Conclusion :
$$\frac AB=\color{red}{\frac{\binom{200}{102}-\binom{100}{51}}{2^{199}-2^{100}}}$$
We obtain \begin{align*} \color{blue}{A}&\color{blue}{=\sum_{k=0}^{24}\binom{100}{4k}\binom{100}{4k+2}}\\ &=\sum_{k=0}^{24}\binom{100}{4k}\binom{100}{98-4k}\tag{1}\\ &=[z^{98}]\sum_{n=0}^{200}\left(\sum_{k=0}^{24}\binom{100}{4k}\binom{100}{n-4k}\right)z^n\tag{2}\\ &=[z^{98}]\sum_{n=0}^{200}\left(\sum_{{4k+l=n}\atop{k,l\geq 0}}\binom{100}{4k}\binom{100}{l}\right)z^n\\ &=[z^{98}]\frac{1}{4}\left((1+z)^{100}+(1+iz)^{100}\right.\\ &\qquad\qquad\quad\left.+(1-z)^{100}+(1-iz)^{100}\right)(1+z)^{100}\tag{3}\\ &=[z^{98}]\frac{1}{4}\left((1+z)^{200}+\left(1-z^2\right)^{100}\right)\tag{4}\\ &\,\,\color{blue}{=\frac{1}{4}\left[\binom{200}{98}-\binom{100}{49}\right]}\tag{5} \end{align*}
Comment:
In (1) we use the binomial identity $\binom{p}{q}=\binom{p}{p-q}$.
In (2) we introduce coefficient of operator and interpret the expression as convolution of the product of two polynomials in $z$.
In (3) we recall the default case $$\sum_{n=0}^{200}\left(\sum_{{k+l=n}\atop{k,l\geq 0}}\binom{100}{k}\binom{100}{l}\right)z^n=(1+z)^{100}(1+z)^{100}.$$ We use series multisection with the $4$-th roots of unity to filter all elements which are not a multiple of $4$.
In (4) we skip terms which do not contribute.
In (5) we select the coefficient of $z^{98}$.
We obtain \begin{align*} \color{blue}{B}&\color{blue}{=\sum_{k=1}^{25}\binom{200}{8k-6}}\\ &=\frac{1}{8}\sum_{k=1}^8\left(\omega_{8}^k\right)^6\left(1+\omega_8^k\right)^{200}\tag{6}\\ &=\frac{1}{8}\sum_{k=1}^8\left(\frac{1+i}{\sqrt{2}}\right)^{6k}\left(1+\left(\frac{1+i}{\sqrt{2}}\right)^k\right)^{200}\tag{7}\\ &=\frac{1}{8}\left((-i)(1+\omega_8)^{200}-(1+i)^{200}+i\left(1-\overline{\omega}_8\right)^{200}+(1-1)^{200}\right.\\ &\qquad\qquad\left.(-i)(1-\omega_8)^{200}-(1-i)^{200}+i\left(1+\overline{\omega}_8\right)^{200}+(1+1)^{200}\right)\\ &=\frac{1}{8}\left((1+1)^{200}-\left((1+i)^{200}+(1-i)^{200}\right)\right)\tag{8}\\ &\,\,\color{blue}{=2^{197}-2^{98}}\tag{9} \end{align*}
Comment:
In (6) we use again multisection of series as we did in (3). This is formula (6.20) in Binomial Identities Derived from Trigonometric and Exponential Series by H.W. Gould.
In (7) we note the $8$-th root of unity is $\omega_8=\frac{1+i}{\sqrt{2}}$. We recall the powers of $\omega_8$ modulo $8$: $\{\omega_8,i,-\overline{\omega}_8,-1,-\omega_8,-i,\overline{\omega}_8,1\}$ which are used in the next line.
In (8) we skip terms which do not contribute.
We finally conclude from (5) and (9) \begin{align*} \color{blue}{\frac{A}{B}=\frac{\binom{200}{98}-\binom{100}{49}}{2^{199}-2^{100}}} \end{align*}