How to normalize a NumPy array to a unit vector?

I would like to convert a NumPy array to a unit vector. More specifically, I am looking for an equivalent version of this normalisation function:

def normalize(v):
    norm = np.linalg.norm(v)
    if norm == 0: 
       return v
    return v / norm

This function handles the situation where vector v has the norm value of 0.

Is there any similar functions provided in sklearn or numpy?


Solution 1:

If you're using scikit-learn you can use sklearn.preprocessing.normalize:

import numpy as np
from sklearn.preprocessing import normalize

x = np.random.rand(1000)*10
norm1 = x / np.linalg.norm(x)
norm2 = normalize(x[:,np.newaxis], axis=0).ravel()
print np.all(norm1 == norm2)
# True

Solution 2:

I agree that it would be nice if such a function were part of the included libraries. But it isn't, as far as I know. So here is a version for arbitrary axes that gives optimal performance.

import numpy as np

def normalized(a, axis=-1, order=2):
    l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
    l2[l2==0] = 1
    return a / np.expand_dims(l2, axis)

A = np.random.randn(3,3,3)
print(normalized(A,0))
print(normalized(A,1))
print(normalized(A,2))

print(normalized(np.arange(3)[:,None]))
print(normalized(np.arange(3)))

Solution 3:

This might also work for you

import numpy as np
normalized_v = v / np.sqrt(np.sum(v**2))

but fails when v has length 0.

In that case, introducing a small constant to prevent the zero division solves this.

Solution 4:

You can specify ord to get the L1 norm. To avoid zero division I use eps, but that's maybe not great.

def normalize(v):
    norm=np.linalg.norm(v, ord=1)
    if norm==0:
        norm=np.finfo(v.dtype).eps
    return v/norm

Solution 5:

If you have multidimensional data and want each axis normalized to its max or its sum:

def normalize(_d, to_sum=True, copy=True):
    # d is a (n x dimension) np array
    d = _d if not copy else np.copy(_d)
    d -= np.min(d, axis=0)
    d /= (np.sum(d, axis=0) if to_sum else np.ptp(d, axis=0))
    return d

Uses numpys peak to peak function.

a = np.random.random((5, 3))

b = normalize(a, copy=False)
b.sum(axis=0) # array([1., 1., 1.]), the rows sum to 1

c = normalize(a, to_sum=False, copy=False)
c.max(axis=0) # array([1., 1., 1.]), the max of each row is 1