Changing a specific column name in pandas DataFrame [duplicate]
I was looking for an elegant way to change a specified column name in a DataFrame
.
play data ...
import pandas as pd
d = {
'one': [1, 2, 3, 4, 5],
'two': [9, 8, 7, 6, 5],
'three': ['a', 'b', 'c', 'd', 'e']
}
df = pd.DataFrame(d)
The most elegant solution I have found so far ...
names = df.columns.tolist()
names[names.index('two')] = 'new_name'
df.columns = names
I was hoping for a simple one-liner ... this attempt failed ...
df.columns[df.columns.tolist().index('one')] = 'another_name'
Any hints gratefully received.
Solution 1:
A one liner does exist:
In [27]: df=df.rename(columns = {'two':'new_name'})
In [28]: df
Out[28]:
one three new_name
0 1 a 9
1 2 b 8
2 3 c 7
3 4 d 6
4 5 e 5
Following is the docstring for the rename
method.
Definition: df.rename(self, index=None, columns=None, copy=True, inplace=False) Docstring: Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Parameters ---------- index : dict-like or function, optional Transformation to apply to index values columns : dict-like or function, optional Transformation to apply to column values copy : boolean, default True Also copy underlying data inplace : boolean, default False Whether to return a new DataFrame. If True then value of copy is ignored. See also -------- Series.rename Returns ------- renamed : DataFrame (new object)
Solution 2:
Since inplace
argument is available, you don't need to copy and assign the original data frame back to itself, but do as follows:
df.rename(columns={'two':'new_name'}, inplace=True)