Probability to z-score and vice versa

How do I calculate the z score of a p-value and vice versa?

For example if I have a p-value of 0.95 I should get 1.96 in return.

I saw some functions in scipy but they only run a z-test on an array.

I have access to numpy, statsmodel, pandas, and scipy (I think).


>>> import scipy.stats as st
>>> st.norm.ppf(.95)
1.6448536269514722
>>> st.norm.cdf(1.64)
0.94949741652589625

Default Python Probabilities

As other users noted, Python calculates left/lower-tail probabilities by default. If you want to determine the density points where 95% of the distribution is included, you have to take another approach:

>>>st.norm.ppf(.975)
1.959963984540054
>>>st.norm.ppf(.025)
-1.960063984540054

Density between two points


Starting in Python 3.8, the standard library provides the NormalDist object as part of the statistics module.

It can be used to get the zscore for which x% of the area under a normal curve lies (ignoring both tails).

We can obtain one from the other and vice versa using the inv_cdf (inverse cumulative distribution function) and the cdf (cumulative distribution function) on the standard normal distribution:

from statistics import NormalDist

NormalDist().inv_cdf((1 + 0.95) / 2.)
# 1.9599639845400536
NormalDist().cdf(1.9599639845400536) * 2 - 1
# 0.95

An explanation for the '(1 + 0.95) / 2.' formula can be found in this wikipedia section.