Explicit solution of the recursion $x_n = x_{n-1}^2 - 2$ with $x_0>2$

From $x_0=m=\alpha + \frac{1}{\alpha}$ we have $$x_1=m^2-2=\alpha^2+\frac{1}{\alpha^2}$$ And from $\alpha^2-m\alpha+1=0$ we have $$\alpha=\frac{m+\sqrt{m^2-4}}{2}\Rightarrow \alpha^2=\frac{m^2-2+m\sqrt{m^2-4}}{2}$$ which satisfies, from (easy to check) $m^2-4<m\sqrt{m^2-4}<m^2-2$: $$m^2-3<\alpha^2<m^2-2$$ So, we conclude $$x_1=m^2-2=\alpha^2+\frac{1}{\alpha^2}=\left \lceil \alpha^2 \right \rceil$$ Then, inductively and recursively, we do the same steps with $m_1=x_1=\beta+\frac{1}{\beta}>2$, where $\beta=\alpha^2$ to conclude: $$x_2=m_1^2-2=\beta^2+\frac{1}{\beta^2}=\left \lceil \beta^2 \right \rceil$$ Or $$x_2=x_1^2-2=\alpha^4+\frac{1}{\alpha^4}=\left \lceil \alpha^4 \right \rceil$$ $$x_3=x_2^2-2=\alpha^8+\frac{1}{\alpha^8}=\left \lceil \alpha^8 \right \rceil$$ $$...$$ $$x_n=x_{n-1}^2-2=\alpha^{2^n}+\frac{1}{\alpha^{2^n}}=\left \lceil \alpha^{2^n} \right \rceil$$