complex integration $\frac{1-|a|^{2}}{\pi}\int_{L}\frac{|dz|}{{|z+a|}^{2}}$
Solution 1:
It's most convenient to use
$$\lvert dz\rvert = \frac{dz}{iz}$$
on the unit circle. With that, the integral becomes
$$\frac{1 - \lvert a\rvert^2}{\pi} \int_L \frac{\lvert dz\rvert}{\lvert z+a\rvert^2} = \frac{1 - \lvert a\rvert^2}{\pi i} \int_{\lvert z\rvert = 1} \frac{dz}{(z + a)(\overline{z} + \overline{a})z} = \frac{1 - \lvert a\rvert^2}{\pi i} \int_{\lvert z\rvert = 1} \frac{dz}{(z + a)(1 + \overline{a}z)},$$
and applying Cauchy's integral formula to $f(z) = \frac{1}{1 + \overline{a}z}$ finishes it.
Solution 2:
Your direct approach in the OP is quite tractable. We need only to complete the integration.
Proceeding, we can write the integral of interest as
$$\begin{align}\oint_{|z|=1}\frac{1}{|z+a|^2}|dz|&=\int_0^{2\pi}\frac{1}{|e^{it}+a|^2}\,dt\\\\ &=\int_0^{2\pi}\frac{1}{1+|a|^2+2|a|\cos(t+\arg(a))}\,dt \tag1\\\\ &=2\int_0^{\pi}\frac{1}{1+|a|^2+2|a|\cos(t)}\,dt \tag2\\\\ \end{align}$$
where we exploited the $2\pi$-periodicity and evenness of the integrand in going from $(1)$ to $(2)$.
We now evaluate the integral on the right-hand side of $(1)$ using the classical Weierstrass Substitution $x=\tan(t/2)$ in $(2)$. This substitution leads to
$$\begin{align} 2\int_0^{\pi}\frac{1}{1+|a|^2+2|a|\cos(t)}\,dt&=4\int_0^{\infty}\frac{1}{(1+|a|)^2+(1-|a|)^2x^2}\,dx \\\\ &=\frac{2\pi}{1-|a|^2} \tag 3 \end{align}$$
Finally, using $(3)$ in $(1)$ yields
$$\bbox[5px,border:2px solid #C0A000]{\frac{1-|a|^2}{\pi}\oint_{|z|=1}\frac{1}{|z+a|^2}|dz|=2}$$
And we're done!