What is the difference between self-types and trait subclasses?
Solution 1:
It is predominately used for Dependency Injection, such as in the Cake Pattern. There exists a great article covering many different forms of dependency injection in Scala, including the Cake Pattern. If you Google "Cake Pattern and Scala", you'll get many links, including presentations and videos. For now, here is a link to another question.
Now, as to what is the difference between a self type and extending a trait, that is simple. If you say B extends A
, then B
is an A
. When you use self-types, B
requires an A
. There are two specific requirements that are created with self-types:
- If
B
is extended, then you're required to mix-in anA
. - When a concrete class finally extends/mixes-in these traits, some class/trait must implement
A
.
Consider the following examples:
scala> trait User { def name: String }
defined trait User
scala> trait Tweeter {
| user: User =>
| def tweet(msg: String) = println(s"$name: $msg")
| }
defined trait Tweeter
scala> trait Wrong extends Tweeter {
| def noCanDo = name
| }
<console>:9: error: illegal inheritance;
self-type Wrong does not conform to Tweeter's selftype Tweeter with User
trait Wrong extends Tweeter {
^
<console>:10: error: not found: value name
def noCanDo = name
^
If Tweeter
was a subclass of User
, there would be no error. In the code above, we required a User
whenever Tweeter
is used, however a User
wasn't provided to Wrong
, so we got an error. Now, with the code above still in scope, consider:
scala> trait DummyUser extends User {
| override def name: String = "foo"
| }
defined trait DummyUser
scala> trait Right extends Tweeter with User {
| val canDo = name
| }
defined trait Right
scala> trait RightAgain extends Tweeter with DummyUser {
| val canDo = name
| }
defined trait RightAgain
With Right
, the requirement to mix-in a User
is satisfied. However, the second requirement mentioned above is not satisfied: the burden of implementing User
still remains for classes/traits which extend Right
.
With RightAgain
both requirements are satisfied. A User
and an implementation of User
are provided.
For more practical use cases, please see the links at the start of this answer! But, hopefully now you get it.
Solution 2:
Self types allow you to define cyclical dependencies. For example, you can achieve this:
trait A { self: B => }
trait B { self: A => }
Inheritance using extends
does not allow that. Try:
trait A extends B
trait B extends A
error: illegal cyclic reference involving trait A
In the Odersky book, look at section 33.5 (Creating spreadsheet UI chapter) where it mentions:
In the spreadsheet example, class Model inherits from Evaluator and thus gains access to its evaluation method. To go the other way, class Evaluator defines its self type to be Model, like this:
package org.stairwaybook.scells
trait Evaluator { this: Model => ...
Hope this helps.
Solution 3:
One additional difference is that self-types can specify non-class types. For instance
trait Foo{
this: { def close:Unit} =>
...
}
The self type here is a structural type. The effect is to say that anything that mixes in Foo must implement a no-arg "close" method returning unit. This allows for safe mixins for duck-typing.
Solution 4:
Another thing that has not been mentioned: because self-types aren't part of the hierarchy of the required class they can be excluded from pattern matching, especially when you are exhaustively matching against a sealed hierarchy. This is convenient when you want to model orthogonal behaviors such as:
sealed trait Person
trait Student extends Person
trait Teacher extends Person
trait Adult { this : Person => } // orthogonal to its condition
val p : Person = new Student {}
p match {
case s : Student => println("a student")
case t : Teacher => println("a teacher")
} // that's it we're exhaustive
Solution 5:
Section 2.3 "Selftype Annotations" of Martin Odersky's original Scala paper Scalable Component Abstractions actually explains the purpose of selftype beyond mixin composition very well: provide an alternative way of associating a class with an abstract type.
The example given in the paper was like the following, and it doesn't seem to have an elegant subclass correspondent:
abstract class Graph {
type Node <: BaseNode;
class BaseNode {
self: Node =>
def connectWith(n: Node): Edge =
new Edge(self, n);
}
class Edge(from: Node, to: Node) {
def source() = from;
def target() = to;
}
}
class LabeledGraph extends Graph {
class Node(label: String) extends BaseNode {
def getLabel: String = label;
def self: Node = this;
}
}