How do you reverse a string in place in C or C++?
How do you reverse a string in C or C++ without requiring a separate buffer to hold the reversed string?
Solution 1:
#include <algorithm>
std::reverse(str.begin(), str.end());
This is the simplest way in C++.
Solution 2:
Read Kernighan and Ritchie
#include <string.h>
void reverse(char s[])
{
int length = strlen(s) ;
int c, i, j;
for (i = 0, j = length - 1; i < j; i++, j--)
{
c = s[i];
s[i] = s[j];
s[j] = c;
}
}
Solution 3:
The standard algorithm is to use pointers to the start / end, and walk them inward until they meet or cross in the middle. Swap as you go.
Reverse ASCII string, i.e. a 0-terminated array where every character fits in 1 char
. (Or other non-multibyte character sets).
void strrev(char *head)
{
if (!head) return;
char *tail = head;
while(*tail) ++tail; // find the 0 terminator, like head+strlen
--tail; // tail points to the last real char
// head still points to the first
for( ; head < tail; ++head, --tail) {
// walk pointers inwards until they meet or cross in the middle
char h = *head, t = *tail;
*head = t; // swapping as we go
*tail = h;
}
}
// test program that reverses its args
#include <stdio.h>
int main(int argc, char **argv)
{
do {
printf("%s ", argv[argc-1]);
strrev(argv[argc-1]);
printf("%s\n", argv[argc-1]);
} while(--argc);
return 0;
}
The same algorithm works for integer arrays with known length, just use tail = start + length - 1
instead of the end-finding loop.
(Editor's note: this answer originally used XOR-swap for this simple version, too. Fixed for the benefit of future readers of this popular question. XOR-swap is highly not recommended; hard to read and making your code compile less efficiently. You can see on the Godbolt compiler explorer how much more complicated the asm loop body is when xor-swap is compiled for x86-64 with gcc -O3.)
Ok, fine, let's fix the UTF-8 chars...
(This is XOR-swap thing. Take care to note that you must avoid swapping with self, because if *p
and *q
are the same location you'll zero it with a^a==0. XOR-swap depends on having two distinct locations, using them each as temporary storage.)
Editor's note: you can replace SWP with a safe inline function using a tmp variable.
#include <bits/types.h>
#include <stdio.h>
#define SWP(x,y) (x^=y, y^=x, x^=y)
void strrev(char *p)
{
char *q = p;
while(q && *q) ++q; /* find eos */
for(--q; p < q; ++p, --q) SWP(*p, *q);
}
void strrev_utf8(char *p)
{
char *q = p;
strrev(p); /* call base case */
/* Ok, now fix bass-ackwards UTF chars. */
while(q && *q) ++q; /* find eos */
while(p < --q)
switch( (*q & 0xF0) >> 4 ) {
case 0xF: /* U+010000-U+10FFFF: four bytes. */
SWP(*(q-0), *(q-3));
SWP(*(q-1), *(q-2));
q -= 3;
break;
case 0xE: /* U+000800-U+00FFFF: three bytes. */
SWP(*(q-0), *(q-2));
q -= 2;
break;
case 0xC: /* fall-through */
case 0xD: /* U+000080-U+0007FF: two bytes. */
SWP(*(q-0), *(q-1));
q--;
break;
}
}
int main(int argc, char **argv)
{
do {
printf("%s ", argv[argc-1]);
strrev_utf8(argv[argc-1]);
printf("%s\n", argv[argc-1]);
} while(--argc);
return 0;
}
- Why, yes, if the input is borked, this will cheerfully swap outside the place.
- Useful link when vandalising in the UNICODE: http://www.macchiato.com/unicode/chart/
- Also, UTF-8 over 0x10000 is untested (as I don't seem to have any font for it, nor the patience to use a hexeditor)
Examples:
$ ./strrev Räksmörgås ░▒▓○◔◑◕●
░▒▓○◔◑◕● ●◕◑◔○▓▒░
Räksmörgås sågrömskäR
./strrev verrts/.