Rename specific column(s) in pandas

Solution 1:

data.rename(columns={'gdp':'log(gdp)'}, inplace=True)

The rename show that it accepts a dict as a param for columns so you just pass a dict with a single entry.

Also see related

Solution 2:

A much faster implementation would be to use list-comprehension if you need to rename a single column.

df.columns = ['log(gdp)' if x=='gdp' else x for x in df.columns]

If the need arises to rename multiple columns, either use conditional expressions like:

df.columns = ['log(gdp)' if x=='gdp' else 'cap_mod' if x=='cap' else x for x in df.columns]

Or, construct a mapping using a dictionary and perform the list-comprehension with it's get operation by setting default value as the old name:

col_dict = {'gdp': 'log(gdp)', 'cap': 'cap_mod'}   ## key→old name, value→new name

df.columns = [col_dict.get(x, x) for x in df.columns]

Timings:

%%timeit
df.rename(columns={'gdp':'log(gdp)'}, inplace=True)
10000 loops, best of 3: 168 µs per loop

%%timeit
df.columns = ['log(gdp)' if x=='gdp' else x for x in df.columns]
10000 loops, best of 3: 58.5 µs per loop