Binary random array with a specific proportion of ones?

What is the efficient(probably vectorized with Matlab terminology) way to generate random number of zeros and ones with a specific proportion? Specially with Numpy?

As my case is special for 1/3, my code is:

import numpy as np 
a=np.mod(np.multiply(np.random.randomintegers(0,2,size)),3)

But is there any built-in function that could handle this more effeciently at least for the situation of K/N where K and N are natural numbers?


Solution 1:

Yet another approach, using np.random.choice:

>>> np.random.choice([0, 1], size=(10,), p=[1./3, 2./3])
array([0, 1, 1, 1, 1, 0, 0, 0, 0, 0])

Solution 2:

A simple way to do this would be to first generate an ndarray with the proportion of zeros and ones you want:

>>> import numpy as np
>>> N = 100
>>> K = 30 # K zeros, N-K ones
>>> arr = np.array([0] * K + [1] * (N-K))
>>> arr
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1])

Then you can just shuffle the array, making the distribution random:

>>> np.random.shuffle(arr)
>>> arr
array([1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0,
       1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1,
       1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
       0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1,
       1, 1, 1, 0, 1, 1, 1, 1])

Note that this approach will give you the exact proportion of zeros/ones you request, unlike say the binomial approach. If you don't need the exact proportion, then the binomial approach will work just fine.

Solution 3:

If I understand your problem correctly, you might get some help with numpy.random.shuffle

>>> def rand_bin_array(K, N):
    arr = np.zeros(N)
    arr[:K]  = 1
    np.random.shuffle(arr)
    return arr

>>> rand_bin_array(5,15)
array([ 0.,  1.,  0.,  1.,  1.,  1.,  0.,  0.,  0.,  1.,  0.,  0.,  0.,
        0.,  0.])