Convert unix time to readable date in pandas dataframe

These appear to be seconds since epoch.

In [20]: df = DataFrame(data['values'])

In [21]: df.columns = ["date","price"]

In [22]: df
Out[22]: 
<class 'pandas.core.frame.DataFrame'>
Int64Index: 358 entries, 0 to 357
Data columns (total 2 columns):
date     358  non-null values
price    358  non-null values
dtypes: float64(1), int64(1)

In [23]: df.head()
Out[23]: 
         date  price
0  1349720105  12.08
1  1349806505  12.35
2  1349892905  12.15
3  1349979305  12.19
4  1350065705  12.15
In [25]: df['date'] = pd.to_datetime(df['date'],unit='s')

In [26]: df.head()
Out[26]: 
                 date  price
0 2012-10-08 18:15:05  12.08
1 2012-10-09 18:15:05  12.35
2 2012-10-10 18:15:05  12.15
3 2012-10-11 18:15:05  12.19
4 2012-10-12 18:15:05  12.15

In [27]: df.dtypes
Out[27]: 
date     datetime64[ns]
price           float64
dtype: object

If you try using:

df[DATE_FIELD]=(pd.to_datetime(df[DATE_FIELD],***unit='s'***))

and receive an error :

"pandas.tslib.OutOfBoundsDatetime: cannot convert input with unit 's'"

This means the DATE_FIELD is not specified in seconds.

In my case, it was milli seconds - EPOCH time.

The conversion worked using below:

df[DATE_FIELD]=(pd.to_datetime(df[DATE_FIELD],unit='ms')) 

Assuming we imported pandas as pd and df is our dataframe

pd.to_datetime(df['date'], unit='s')

works for me.