What is $\int_0^1 \frac{\log \left(1-x^2\right) \sin ^{-1}(x)^2}{x^2} \, dx$?
I encountered the integral $$\int_0^1 \frac{\log \left(1-x^2\right) \sin ^{-1}(x)^2}{x^2} \, dx = -0.9393323982...$$ while researching the evaluation of harmonic sums. Mathematica 11 is not able to evaluate this integral, and is not able to evaluate the underlying indefinite integral.
I considered using the Maclaurin series for the expression $\sin ^{-1}(x)^2$ to evaluate this integral. Using this Maclaurin series, it is easily seen that the problem of evaluating the above integral is equivalent to the problem of evaluating the series $$\sum _{n=1}^{\infty } \frac{2^{2 n-1} H_{n-\frac{1}{2}}}{(1-2 n) n^2 \binom{2 n}{n}}=-0.9393323982...$$ which Mathematica 11 is not able to evaluate directly.
I also considered using the Maclaurin series for the expression $\log \left(1-x^2\right)$ to evaluate the above integral. Using this Macluarin series, it is easily seen that this integral is equal to $$\frac{1}{4} \left(16 \pi C-\pi ^3-\pi ^2 \log (4)\right)+\sum _{n=1}^{\infty } \frac{\, _3F_2\left(\frac{1}{2},\frac{1}{2},1;\frac{3}{2},n+1;1\right)}{n^2-2 n^3}=-0.939332...,$$ but Mathematica is unable to evaluate the above infinite series.
What is a closed-form evaluation of $\int_0^1 \frac{\log \left(1-x^2\right) \sin ^{-1}(x)^2}{x^2} \, dx$? What techniques can be applied to evaluate this definite integral?
(Please forgive the length of what follows. I wanted my response to be accessible to as broad of an audience as possible.)
Part 1:
Our main objective is to evaluate the following definite integral:
$$\mathcal{I}:=\int_{0}^{1}\frac{\ln{\left(1-x^{2}\right)}\arcsin^{2}{\left(x\right)}}{x^{2}}\,\mathrm{d}x.\tag{1}$$
It will be shown that the value of $\mathcal{I}$ is
$$\mathcal{I}=7\,\zeta{\left(3\right)}-\frac{\pi^{2}}{2}\ln{\left(2\right)}-\frac{\pi^{3}}{2}+8\ln{\left(2\right)}\,G+4\,{_4F_3}{\left(\frac12,\frac12,1,1;\frac32,\frac32,\frac32;1\right)}.$$
For our purposes here, it will be convenient to define elementary transcendental functions such as the logarithm and inverse trigonometric functions via their usual integral representations. In particular, for real argument $x\in\mathbb{R}$ we have
$$\ln{\left(x\right)}:=\int_{x}^{1}\frac{\left(-1\right)}{t}\,\mathrm{d}t;~~~\small{x>0},$$
and
$$\arcsin{\left(x\right)}:=\int_{0}^{x}\frac{\mathrm{d}t}{\sqrt{1-t^{2}}};~~~\small{\left|x\right|\le1}.$$
Consider the following antiderivative:
$$\begin{align} \int\frac{\ln{\left(1-x^{2}\right)}}{x^{2}}\,\mathrm{d}x &=\int\frac{\left(-1\right)\operatorname{Li}_{1}{\left(x^{2}\right)}}{x^{2}}\,\mathrm{d}x\\ &=\frac{\operatorname{Li}_{1}{\left(x^{2}\right)}}{x}-\int\frac{2\operatorname{Li}_{0}{\left(x^{2}\right)}}{x^{2}}\,\mathrm{d}x;~~~\small{I.B.P.s}\\ &=\frac{\operatorname{Li}_{1}{\left(x^{2}\right)}}{x}-\int\frac{2}{1-x^{2}}\,\mathrm{d}x\\ &=\frac{\operatorname{Li}_{1}{\left(x^{2}\right)}}{x}-2\operatorname{arctanh}{\left(x\right)}+\color{grey}{constant}.\tag{2}\\ \end{align}$$
Using the above result, we begin to attack $\mathcal{I}$ with integration by parts. We obtain
$$\begin{align} \mathcal{I} &=\int_{0}^{1}\frac{\ln{\left(1-x^{2}\right)}\arcsin^{2}{\left(x\right)}}{x^{2}}\,\mathrm{d}x\\ &=\left[\left(\frac{\operatorname{Li}_{1}{\left(x^{2}\right)}}{x}-2\operatorname{arctanh}{\left(x\right)}\right)\arcsin^{2}{\left(x\right)}\right]_{x=0}^{x=1}\\ &~~~~~-\int_{0}^{1}\left[\frac{\operatorname{Li}_{1}{\left(x^{2}\right)}}{x}-2\operatorname{arctanh}{\left(x\right)}\right]\frac{2\arcsin{\left(x\right)}}{\sqrt{1-x^{2}}}\,\mathrm{d}x;~~~\small{I.B.P.s}\\ &=\arcsin^{2}{\left(1\right)}\lim_{x\to1}\left[-\frac{\left(1-x\right)\ln{\left(1-x\right)}+\left(1+x\right)\ln{\left(1+x\right)}}{x}\right]\\ &~~~~~+\int_{0}^{1}\frac{4\operatorname{arctanh}{\left(x\right)}\arcsin{\left(x\right)}}{\sqrt{1-x^{2}}}\,\mathrm{d}x-\int_{0}^{1}\frac{2\operatorname{Li}_{1}{\left(x^{2}\right)}\arcsin{\left(x\right)}}{x\sqrt{1-x^{2}}}\,\mathrm{d}x\\ &=-\frac{\pi^{2}}{2}\ln{\left(2\right)}\\ &~~~~~+\int_{0}^{1}\frac{2\left[\arcsin^{2}{\left(1\right)}-\arcsin^{2}{\left(x\right)}\right]}{1-x^{2}}\,\mathrm{d}x;~~~\small{I.B.P.s}\\ &~~~~~+\int_{0}^{1}\frac{2\ln{\left(1-x^{2}\right)}\arcsin{\left(x\right)}}{x\sqrt{1-x^{2}}}\,\mathrm{d}x\\ &=-\frac{\pi^{2}}{2}\ln{\left(2\right)}\\ &~~~~~+\int_{0}^{1}\frac{\left[\arcsin^{2}{\left(1\right)}-\arcsin^{2}{\left(\frac{1-y}{1+y}\right)}\right]}{y}\,\mathrm{d}y;~~~\small{\left[\frac{1-x}{1+x}=y\right]}\\ &~~~~~+\int_{0}^{\frac{\pi}{2}}\frac{2\theta\ln{\left(\cos^{2}{\left(\theta\right)}\right)}}{\sin{\left(\theta\right)}}\,\mathrm{d}\theta;~~~\small{\left[\arcsin{\left(x\right)}=\theta\right]}\\ &=-\frac{\pi^{2}}{2}\ln{\left(2\right)}+\int_{0}^{1}\frac{\frac{\pi^{2}}{4}-\arcsin^{2}{\left(\frac{1-y}{1+y}\right)}}{y}\,\mathrm{d}y\\ &~~~~~-4\int_{0}^{\frac{\pi}{2}}\theta\csc{\left(\theta\right)}\ln{\left(\sec{\left(\theta\right)}\right)}\,\mathrm{d}\theta.\tag{3}\\ \end{align}$$
Let $\mathcal{J}$ denote the final log-trig integral in the last line above:
$$\mathcal{J}:=\int_{0}^{\frac{\pi}{2}}\theta\csc{\left(\theta\right)}\ln{\left(\sec{\left(\theta\right)}\right)}\,\mathrm{d}\theta.\tag{4}$$
The integral $\mathcal{J}$ is by far the more difficult of the two remaining integrals we need to evaluate, so let's save that for last.
Now, the following trigonometric identity may be readily verified:
$$\arcsin{\left(\frac{1-y}{1+y}\right)}=\frac{\pi}{2}-2\arctan{\left(\sqrt{y}\right)};~~~\small{y\ge0}.\tag{5}$$
Continuing we our main calculation,
$$\begin{align} \mathcal{I} &=\small{-\frac{\pi^{2}}{2}\ln{\left(2\right)}+\int_{0}^{1}\frac{\frac{\pi^{2}}{4}-\arcsin^{2}{\left(\frac{1-y}{1+y}\right)}}{y}\,\mathrm{d}y-4\int_{0}^{\frac{\pi}{2}}\theta\csc{\left(\theta\right)}\ln{\left(\sec{\left(\theta\right)}\right)}\,\mathrm{d}\theta}\\ &=-4\,\mathcal{J}-\frac{\pi^{2}}{2}\ln{\left(2\right)}+\int_{0}^{1}\frac{\frac{\pi^{2}}{4}-\left[\frac{\pi}{2}-2\arctan{\left(\sqrt{y}\right)}\right]^{2}}{y}\,\mathrm{d}y\\ &=-4\,\mathcal{J}-\frac{\pi^{2}}{2}\ln{\left(2\right)}+\int_{0}^{1}\frac{4\arctan{\left(\sqrt{y}\right)}\left[\frac{\pi}{2}-\arctan{\left(\sqrt{y}\right)}\right]}{y}\,\mathrm{d}y\\ &=-4\,\mathcal{J}-\frac{\pi^{2}}{2}\ln{\left(2\right)}+\int_{0}^{1}\frac{2\pi\arctan{\left(\sqrt{y}\right)}-4\arctan^{2}{\left(\sqrt{y}\right)}}{y}\,\mathrm{d}y\\ &=-4\,\mathcal{J}-\frac{\pi^{2}}{2}\ln{\left(2\right)}+\int_{0}^{1}\frac{4\pi\arctan{\left(x\right)}-8\arctan^{2}{\left(x\right)}}{x}\,\mathrm{d}x;~~~\small{\left[\sqrt{y}=x\right]}\\ &=-\frac{\pi^{2}}{2}\ln{\left(2\right)}+4\pi\int_{0}^{1}\frac{\arctan{\left(x\right)}}{x}\,\mathrm{d}x-8\int_{0}^{1}\frac{\arctan^{2}{\left(x\right)}}{x}\,\mathrm{d}x-4\,\mathcal{J}\\ &=-\frac{\pi^{2}}{2}\ln{\left(2\right)}+4\pi\operatorname{Ti}_{2}{\left(1\right)}-\int_{0}^{1}\frac{8\arctan^{2}{\left(x\right)}}{x}\,\mathrm{d}x-4\,\mathcal{J},\\ \end{align}$$
where $\operatorname{Ti}_{2}{\left(z\right)}$ is an auxiliary polylogarithmic function known as the inverse tangent integral. It's value at unity is simply Catalan's constant, which I'll be denoting by $G$.
As for the integral $\int_{0}^{1}\frac{8\arctan^{2}{\left(x\right)}}{x}\,\mathrm{d}x$, it is shown below in the first appendix that
$$\int_{0}^{1}\frac{8\arctan^{2}{\left(x\right)}}{x}\,\mathrm{d}x=4\pi\,G-7\,\zeta{\left(3\right)}.$$
Then,
$$\begin{align} \mathcal{I} &=-\frac{\pi^{2}}{2}\ln{\left(2\right)}+4\pi\operatorname{Ti}_{2}{\left(1\right)}-\int_{0}^{1}\frac{8\arctan^{2}{\left(x\right)}}{x}\,\mathrm{d}x-4\,\mathcal{J}\\ &=-\frac{\pi^{2}}{2}\ln{\left(2\right)}+4\pi\,G-\left[4\pi\,G-7\,\zeta{\left(3\right)}\right]-4\,\mathcal{J}\\ &=7\,\zeta{\left(3\right)}-3\ln{\left(2\right)}\,\zeta{\left(2\right)}-4\,\mathcal{J}.\tag{6}\\ \end{align}$$
Part 2:
Assuming $-\frac{\pi}{2}\le\theta\le\frac{\pi}{2}$, the following definite integral may be evaluated in terms of the Legendre chi function:
$$\begin{align} \int_{0}^{\theta}\csc{\left(\varphi\right)}\ln{\left(\sec{\left(\varphi\right)}\right)}\,\mathrm{d}\varphi &=\int_{0}^{\tan{\left(\frac{\theta}{2}\right)}}t^{-1}\ln{\left(\frac{1+t^{2}}{1-t^{2}}\right)}\,\mathrm{d}t;~~~\small{\left[\tan{\left(\frac{\varphi}{2}\right)}=t\right]}\\ &=\int_{0}^{\tan^{2}{\left(\frac{\theta}{2}\right)}}\frac{\ln{\left(\frac{1+x}{1-x}\right)}}{2x}\,\mathrm{d}x;~~~\small{\left[t^{2}=x\right]}\\ &=\int_{0}^{\tan^{2}{\left(\frac{\theta}{2}\right)}}\frac{\operatorname{arctanh}{\left(x\right)}}{x}\,\mathrm{d}x\\ &=\chi_{2}{\left(\tan^{2}{\left(\frac{\theta}{2}\right)}\right)}.\\ \end{align}$$
The Legendre chi function evaluated at unity takes the special value,
$$\chi_{2}{\left(1\right)}=\frac34\,\zeta{\left(2\right)}=\frac{\pi^{2}}{8}.$$
Using the above integral to integrate $\mathcal{J}$ by parts, we find
$$\begin{align} \mathcal{J} &=\int_{0}^{\frac{\pi}{2}}\theta\csc{\left(\theta\right)}\ln{\left(\sec{\left(\theta\right)}\right)}\,\mathrm{d}\theta\\ &=\lim_{\theta\to\frac{\pi}{2}}\theta\int_{0}^{\theta}\csc{\left(\varphi\right)}\ln{\left(\sec{\left(\varphi\right)}\right)}\,\mathrm{d}\varphi-\int_{0}^{\frac{\pi}{2}}\mathrm{d}\theta\int_{0}^{\theta}\mathrm{d}\varphi\,\csc{\left(\varphi\right)}\ln{\left(\sec{\left(\varphi\right)}\right)}\\ &=\lim_{\theta\to\frac{\pi}{2}}\theta\,\chi_{2}{\left(\tan^{2}{\left(\frac{\theta}{2}\right)}\right)}-\int_{0}^{\frac{\pi}{2}}\chi_{2}{\left(\tan^{2}{\left(\frac{\theta}{2}\right)}\right)}\,\mathrm{d}\theta\\ &=\frac{\pi}{2}\,\chi_{2}{\left(\tan^{2}{\left(\frac{\pi}{4}\right)}\right)}-\int_{0}^{1}\frac{2\,\chi_{2}{\left(t^{2}\right)}}{1+t^{2}}\,\mathrm{d}t;~~~\small{\left[\tan{\left(\frac{\theta}{2}\right)}=t\right]}\\ &=\frac{\pi}{2}\,\chi_{2}{\left(1\right)}-\int_{0}^{1}\frac{\chi_{2}{\left(u\right)}}{\left(1+u\right)\sqrt{u}}\,\mathrm{d}u;~~~\small{\left[t^{2}=u\right]}\\ &=\frac{\pi}{2}\,\chi_{2}{\left(1\right)}-\int_{0}^{1}\frac{\chi_{2}{\left(\frac{1-x}{1+x}\right)}}{\sqrt{1-x^{2}}}\,\mathrm{d}x;~~~\small{\left[u=\frac{1-x}{1+x}\right]}\\ &=\frac{\pi}{2}\,\chi_{2}{\left(1\right)}-\int_{0}^{1}\frac{\chi_{2}{\left(1\right)}+\ln{\left(x\right)}\operatorname{arctanh}{\left(x\right)}-\chi_{2}{\left(x\right)}}{\sqrt{1-x^{2}}}\,\mathrm{d}x\\ &=\frac{\pi}{2}\,\chi_{2}{\left(1\right)}-\chi_{2}{\left(1\right)}\int_{0}^{1}\frac{\mathrm{d}x}{\sqrt{1-x^{2}}}-\int_{0}^{1}\frac{\ln{\left(x\right)}\operatorname{arctanh}{\left(x\right)}}{\sqrt{1-x^{2}}}\,\mathrm{d}x+\int_{0}^{1}\frac{\chi_{2}{\left(x\right)}}{\sqrt{1-x^{2}}}\,\mathrm{d}x\\ &=\frac{\pi}{2}\,\chi_{2}{\left(1\right)}-\frac{\pi}{2}\,\chi_{2}{\left(1\right)}\\ &~~~~~+\int_{0}^{1}\frac{\operatorname{arctanh}{\left(x\right)}\arcsin{\left(x\right)}}{x}\,\mathrm{d}x+\int_{0}^{1}\frac{\ln{\left(x\right)}\arcsin{\left(x\right)}}{1-x^{2}}\,\mathrm{d}x;~~~\small{I.B.P.s}\\ &~~~~~+\int_{0}^{1}\frac{\chi_{2}{\left(x\right)}}{\sqrt{1-x^{2}}}\,\mathrm{d}x\\ &=\int_{0}^{1}\left[\frac{\operatorname{arctanh}{\left(x\right)}\arcsin{\left(x\right)}}{x}+\frac{\chi_{2}{\left(x\right)}}{\sqrt{1-x^{2}}}\right]\,\mathrm{d}x+\int_{0}^{1}\frac{\ln{\left(x\right)}\arcsin{\left(x\right)}}{1-x^{2}}\,\mathrm{d}x\\ &=\frac{\pi}{2}\,\chi_{2}{\left(1\right)}-\int_{0}^{1}\frac{\ln{\left(\frac{1}{x}\right)}\arcsin{\left(x\right)}}{1-x^{2}}\,\mathrm{d}x\\ &=:\frac{\pi}{2}\,\chi_{2}{\left(1\right)}-\mathcal{K},\\ \end{align}$$
where in the last line above we've implicitly defined $\mathcal{K}$ to denote the integral
$$\mathcal{K}:=\int_{0}^{1}\frac{\ln{\left(\frac{1}{x}\right)}\arcsin{\left(x\right)}}{1-x^{2}}\,\mathrm{d}x.$$
Part 3:
We now find a closed form evaluation for the integral $\mathcal{K}$ in terms of generalized hypergeometrics. To begin, we can reduce $\mathcal{K}$ to a triple integral of a simple (relatively speaking) algebraic integrand over the unit cube:
$$\begin{align} \mathcal{K} &=\int_{0}^{1}\frac{\ln{\left(\frac{1}{x}\right)}\arcsin{\left(x\right)}}{1-x^{2}}\,\mathrm{d}x\\ &=-\int_{0}^{1}\frac{\ln{\left(x\right)}\arcsin{\left(x\right)}}{1-x^{2}}\,\mathrm{d}x\\ &=-\int_{0}^{1}\mathrm{d}x\,\frac{\arcsin{\left(x\right)}}{\left(1-x^{2}\right)}\int_{x}^{1}\mathrm{d}z\,\frac{\left(-1\right)}{z}\\ &=\int_{0}^{1}\mathrm{d}x\int_{x}^{1}\mathrm{d}z\,\frac{\arcsin{\left(x\right)}}{\left(1-x^{2}\right)z}\\ &=\int_{0}^{1}\mathrm{d}x\int_{x}^{1}\mathrm{d}z\,\frac{1}{\left(1-x^{2}\right)z}\int_{0}^{x}\mathrm{d}y\,\frac{1}{\sqrt{1-y^{2}}}\\ &=\int_{0}^{1}\mathrm{d}x\int_{x}^{1}\mathrm{d}z\int_{0}^{x}\mathrm{d}y\,\frac{1}{\left(1-x^{2}\right)z\sqrt{1-y^{2}}}\\ &=\int_{0}^{1}\mathrm{d}z\int_{0}^{z}\mathrm{d}x\int_{0}^{x}\mathrm{d}y\,\frac{1}{z\left(1-x^{2}\right)\sqrt{1-y^{2}}}\\ &=\int_{0}^{1}\mathrm{d}z\int_{0}^{1}\mathrm{d}t\int_{0}^{zt}\mathrm{d}y\,\frac{1}{\left(1-z^{2}t^{2}\right)\sqrt{1-y^{2}}};~~~\small{\left[x=zt\right]}\\ &=\int_{0}^{1}\mathrm{d}z\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}u\,\frac{zt}{\left(1-z^{2}t^{2}\right)\sqrt{1-z^{2}t^{2}u^{2}}};~~~\small{\left[y=ztu\right]}\\ &=\frac12\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}t\int_{0}^{1}\mathrm{d}u\,\frac{t}{\left(1-xt^{2}\right)\sqrt{1-xt^{2}u^{2}}};~~~\small{\left[z^{2}=x\right]}\\ &=\frac14\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}y\int_{0}^{1}\mathrm{d}u\,\frac{1}{\left(1-xy\right)\sqrt{1-xyu^{2}}};~~~\small{\left[t^{2}=y\right]}\\ &=\frac18\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}y\int_{0}^{1}\mathrm{d}z\,\frac{1}{\left(1-xy\right)\sqrt{z\left(1-xyz\right)}};~~~\small{\left[u^{2}=z\right]}\\ &=\frac18\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}z\int_{0}^{1}\mathrm{d}y\,\frac{1}{\left(1-xy\right)\sqrt{z\left(1-zxy\right)}}\\ &=\frac18\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}z\,\frac{1}{\sqrt{z}}\int_{0}^{1}\frac{\mathrm{d}y}{\left(1-xy\right)\sqrt{1-zxy}}.\\ \end{align}$$
Using the machinery of hypergeometric functions to solve the integrals, we arrive at
$$\begin{align} \mathcal{K} &=\frac18\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}z\,\frac{1}{\sqrt{z}}\int_{0}^{1}\frac{\mathrm{d}y}{\left(1-xy\right)\sqrt{1-zxy}}\\ &=\frac18\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}z\,\frac{1}{\sqrt{z}}\,F_{1}{\left(1;1,\frac12;2;x,zx\right)}\\ &=\small{\int_{0}^{1}\frac{\mathrm{d}x}{4x}\int_{0}^{1}\frac{\mathrm{d}z}{\sqrt{z\left(1-xz\right)}}\left[{_2F_1}{\left(1,\frac12;\frac32;\frac{1-z}{1-xz}\right)}-\sqrt{1-xz}\,{_2F_1}{\left(1,\frac12;\frac32;1-z\right)}\right]}\\ &=\small{\frac14\int_{0}^{1}\frac{\mathrm{d}x}{x}\,\left[\int_{0}^{1}\frac{\mathrm{d}z}{\sqrt{z\left(1-xz\right)}}\,{_2F_1}{\left(1,\frac12;\frac32;\frac{1-z}{1-xz}\right)}-\int_{0}^{1}\frac{\mathrm{d}z}{\sqrt{z}}\,{_2F_1}{\left(1,\frac12;\frac32;1-z\right)}\right]}\\ &=\frac14\int_{0}^{1}\frac{\mathrm{d}x}{x}\,\bigg{[}\int_{0}^{1}\mathrm{d}w\,\frac{\sqrt{1-x}}{\left(1-xw\right)\sqrt{1-w}}\,{_2F_1}{\left(1,\frac12;\frac32;w\right)};~~~\small{\left[\frac{1-z}{1-xz}=w\right]}\\ &~~~~~-\int_{0}^{1}\frac{\mathrm{d}t}{\sqrt{1-t}}\,{_2F_1}{\left(1,\frac12;\frac32;t\right)}\bigg{]};~~~\small{\left[z=1-t\right]}\\ &=\frac14\int_{0}^{1}\frac{\mathrm{d}x}{x}\int_{0}^{1}\frac{\mathrm{d}t}{\sqrt{1-t}}\,\left[\frac{\sqrt{1-x}}{\left(1-xt\right)}-1\right]\,{_2F_1}{\left(1,\frac12;\frac32;t\right)}\\ &=\frac14\int_{0}^{1}\frac{\mathrm{d}t}{\sqrt{1-t}}\int_{0}^{1}\mathrm{d}x\,\left[\frac{1-x}{x\left(1-tx\right)\sqrt{1-x}}-\frac{1}{x}\right]\,{_2F_1}{\left(1,\frac12;\frac32;t\right)}\\ &=\frac14\int_{0}^{1}\frac{\mathrm{d}t}{\sqrt{1-t}}\int_{0}^{1}\mathrm{d}x\,\left[\frac{1}{x\sqrt{1-x}}-\frac{1-t}{\left(1-tx\right)\sqrt{1-x}}-\frac{1}{x}\right]\,{_2F_1}{\left(1,\frac12;\frac32;t\right)}\\ &=\frac14\int_{0}^{1}\frac{\mathrm{d}t}{\sqrt{1-t}}\,\left[\int_{0}^{1}\mathrm{d}x\,\frac{1-\sqrt{1-x}}{x\sqrt{1-x}}-\int_{0}^{1}\mathrm{d}x\,\frac{1-t}{\left(1-tx\right)\sqrt{1-x}}\right]\,{_2F_1}{\left(1,\frac12;\frac32;t\right)}\\ &=\frac14\int_{0}^{1}\frac{\mathrm{d}t}{\sqrt{1-t}}\,\left[\int_{0}^{1}\mathrm{d}y\,\frac{2}{2-y}-2\left(1-t\right)\int_{0}^{1}\frac{\mathrm{d}x}{2\left(1-tx\right)\sqrt{1-x}}\right]\,\\ &~~~~~\times{_2F_1}{\left(1,\frac12;\frac32;t\right)};~~~\small{\left[1-\sqrt{1-x}=y\right]}\\ &=\frac12\int_{0}^{1}\frac{\mathrm{d}t}{\sqrt{1-t}}\,\left[\int_{0}^{1}\frac{\mathrm{d}y}{2-y}-\left(1-t\right)\,{_2F_1}{\left(1,1;\frac32;t\right)}\right]\,{_2F_1}{\left(1,\frac12;\frac32;t\right)}\\ &=\frac12\int_{0}^{1}\frac{\mathrm{d}t}{\sqrt{1-t}}\,\left[\ln{\left(2\right)}-\left(1-t\right)\,{_2F_1}{\left(1,1;\frac32;t\right)}\right]\,{_2F_1}{\left(1,\frac12;\frac32;t\right)}\\ &=\frac12\ln{\left(2\right)}\int_{0}^{1}\frac{\mathrm{d}t}{\sqrt{1-t}}\,{_2F_1}{\left(1,\frac12;\frac32;t\right)}\\ &~~~~~-\frac12\int_{0}^{1}\mathrm{d}t\,\sqrt{1-t}\,{_2F_1}{\left(1,\frac12;\frac32;t\right)}\,{_2F_1}{\left(1,1;\frac32;t\right)}\\ &=\ln{\left(2\right)}\,{_3F_2}{\left(1,\frac12,1;\frac32,\frac32;1\right)}-\frac12\int_{0}^{1}\mathrm{d}t\,{_2F_1}{\left(\frac12,1;\frac32;t\right)}\,{_2F_1}{\left(\frac12,\frac12;\frac32;t\right)}\\ &=\ln{\left(2\right)}\,{_3F_2}{\left(\frac12,1,1;\frac32,\frac32;1\right)}-\frac12\int_{0}^{1}\mathrm{d}t\,\frac{\operatorname{arctanh}{\left(\sqrt{t}\right)}\arcsin{\left(\sqrt{t}\right)}}{t}\\ &=\ln{\left(2\right)}\,{_3F_2}{\left(\frac12,1,1;\frac32,\frac32;1\right)}-\int_{0}^{1}\mathrm{d}x\,\frac{\operatorname{arctanh}{\left(x\right)}\arcsin{\left(x\right)}}{x};~~~\small{\left[\sqrt{t}=x\right]}\\ &=\ln{\left(2\right)}\,{_3F_2}{\left(\frac12,1,1;\frac32,\frac32;1\right)}-\frac{\pi}{2}\,\chi_{2}{\left(1\right)}+\int_{0}^{1}\mathrm{d}x\,\frac{\chi_{2}{\left(x\right)}}{\sqrt{1-x^{2}}};~~~\small{I.B.P.s}\\ &=\ln{\left(2\right)}\,{_3F_2}{\left(\frac12,1,1;\frac32,\frac32;1\right)}-\frac{\pi}{2}\,\chi_{2}{\left(1\right)}+\int_{0}^{1}\mathrm{d}t\,\frac{\chi_{2}{\left(\sqrt{t}\right)}}{2\sqrt{t\left(1-t\right)}};~~~\small{\left[x=\sqrt{t}\right]}\\ &=\ln{\left(2\right)}\,{_3F_2}{\left(\frac12,1,1;\frac32,\frac32;1\right)}-\frac{\pi}{2}\,\chi_{2}{\left(1\right)}+\int_{0}^{1}\mathrm{d}t\,\frac{1}{2\sqrt{1-t}}\,{_3F_2}{\left(\frac12,\frac12,1;\frac32,\frac32;t\right)}\\ &=-\frac{\pi}{2}\,\chi_{2}{\left(1\right)}+\ln{\left(2\right)}\,{_3F_2}{\left(\frac12,1,1;\frac32,\frac32;1\right)}+{_4F_3}{\left(\frac12,\frac12,1,1;\frac32,\frac32,\frac32;1\right)}.\tag{7}\\ \end{align}$$
The ${_3F_2}$ turns out to be simply an integer multiple of Catalan's constant. It's value is derived in the second appendix below.
Thus,
$$\begin{align} \mathcal{J} &=\frac{\pi}{2}\,\chi_{2}{\left(1\right)}-\mathcal{K}\\ &=\pi\,\chi_{2}{\left(1\right)}-\ln{\left(2\right)}\,{_3F_2}{\left(\frac12,1,1;\frac32,\frac32;1\right)}-{_4F_3}{\left(\frac12,\frac12,1,1;\frac32,\frac32,\frac32;1\right)}\\ &=\pi\,\chi_{2}{\left(1\right)}-2\ln{\left(2\right)}\,G-{_4F_3}{\left(\frac12,\frac12,1,1;\frac32,\frac32,\frac32;1\right)}.\\ \end{align}$$
Finally,
$$\begin{align} \mathcal{I} &=7\,\zeta{\left(3\right)}-3\ln{\left(2\right)}\,\zeta{\left(2\right)}-4\,\mathcal{J}\\ &=7\,\zeta{\left(3\right)}-\frac{\pi^{2}}{2}\ln{\left(2\right)}-4\left[\pi\,\chi_{2}{\left(1\right)}-2\ln{\left(2\right)}\,G-{_4F_3}{\left(\frac12,\frac12,1,1;\frac32,\frac32,\frac32;1\right)}\right]\\ &=7\,\zeta{\left(3\right)}-\frac{\pi^{2}}{2}\ln{\left(2\right)}-\frac{\pi^{3}}{2}+8\ln{\left(2\right)}\,G+4\,{_4F_3}{\left(\frac12,\frac12,1,1;\frac32,\frac32,\frac32;1\right)}.\blacksquare\\ \end{align}$$
Appendix 1:
$$\begin{align} \int_{0}^{1}\frac{8\arctan^{2}{\left(x\right)}}{x}\,\mathrm{d}x &=\int_{0}^{\frac{\pi}{2}}\theta^{2}\cot{\left(\frac{\theta}{2}\right)}\sec^{2}{\left(\frac{\theta}{2}\right)}\,\mathrm{d}\theta;~~~\small{\left[2\arctan{\left(x\right)}=\theta\right]}\\ &=\int_{0}^{\frac{\pi}{2}}\frac{2\theta^{2}}{2\sin{\left(\frac{\theta}{2}\right)}\cos{\left(\frac{\theta}{2}\right)}}\,\mathrm{d}\theta\\ &=\int_{0}^{\frac{\pi}{2}}\frac{2\theta^{2}}{\sin{\left(\theta\right)}}\,\mathrm{d}\theta\\ &=-\int_{0}^{\frac{\pi}{2}}4\theta\ln{\left(\tan{\left(\frac{\theta}{2}\right)}\right)}\,\mathrm{d}\theta\\ &=-\int_{0}^{\frac{\pi}{2}}4\theta\ln{\left(\sin{\left(\frac{\theta}{2}\right)}\right)}\,\mathrm{d}\theta+\int_{0}^{\frac{\pi}{2}}4\theta\ln{\left(\cos{\left(\frac{\theta}{2}\right)}\right)}\,\mathrm{d}\theta\\ &=-\int_{0}^{\frac{\pi}{2}}4\theta\ln{\left(\sin{\left(\frac{\theta}{2}\right)}\right)}\,\mathrm{d}\theta+\int_{\frac{\pi}{2}}^{\pi}4\left(\pi-\theta\right)\ln{\left(\sin{\left(\frac{\theta}{2}\right)}\right)}\,\mathrm{d}\theta\\ &=-\int_{0}^{\frac{\pi}{2}}4\theta\ln{\left(\sin{\left(\frac{\theta}{2}\right)}\right)}\,\mathrm{d}\theta-\int_{\frac{\pi}{2}}^{\pi}4\theta\ln{\left(\sin{\left(\frac{\theta}{2}\right)}\right)}\,\mathrm{d}\theta\\ &~~~~~+\int_{\frac{\pi}{2}}^{\pi}4\pi\ln{\left(\sin{\left(\frac{\theta}{2}\right)}\right)}\,\mathrm{d}\theta\\ &=-4\int_{0}^{\pi}\theta\ln{\left(\sin{\left(\frac{\theta}{2}\right)}\right)}\,\mathrm{d}\theta+4\pi\int_{\frac{\pi}{2}}^{\pi}\ln{\left(\sin{\left(\frac{\theta}{2}\right)}\right)}\,\mathrm{d}\theta\\ &=4\ln{\left(2\right)}\int_{0}^{\pi}\theta\,\mathrm{d}\theta+4\int_{0}^{\pi}\theta\left[-\ln{\left(2\sin{\left(\frac{\theta}{2}\right)}\right)}\right]\,\mathrm{d}\theta\\ &~~~~~-4\pi\ln{\left(2\right)}\int_{\frac{\pi}{2}}^{\pi}\mathrm{d}\theta-4\pi\int_{\frac{\pi}{2}}^{\pi}\left[-\ln{\left(2\sin{\left(\frac{\theta}{2}\right)}\right)}\right]\,\mathrm{d}\theta\\ &=2\pi^{2}\ln{\left(2\right)}-2\pi^{2}\ln{\left(2\right)}-4\pi\left[\operatorname{Cl}_{2}{\left(\pi\right)}-\operatorname{Cl}_{2}{\left(\frac{\pi}{2}\right)}\right]\\ &~~~~~-4\int_{0}^{\pi}\operatorname{Cl}_{2}{\left(\theta\right)}\,\mathrm{d}\theta;~~~\small{I.B.P.s}\\ &=4\operatorname{Cl}_{3}{\left(\pi\right)}+4\pi\operatorname{Cl}_{2}{\left(\frac{\pi}{2}\right)}-4\,\zeta{\left(3\right)}\\ &=4\pi\,G-7\,\zeta{\left(3\right)}.\blacksquare\\ \end{align}$$
Appendix 2:
$$\begin{align} {_3F_2}{\left(\frac12,1,1;\frac32,\frac32;1\right)} &={_3F_2}{\left(1,1,\frac12;\frac32,\frac32;1\right)}\\ &=\frac12\int_{0}^{1}\mathrm{d}t\,t^{-\frac12}\,{_2F_1}{\left(1,1;\frac32;t\right)}\\ &=\frac12\int_{0}^{1}\mathrm{d}t\,\frac{1}{\sqrt{t\left(1-t\right)}}\,{_2F_1}{\left(\frac12,\frac12;\frac32;t\right)}\\ &=\frac12\int_{0}^{1}\mathrm{d}t\,\frac{\arcsin{\left(\sqrt{t}\right)}}{t\sqrt{1-t}}\\ &=\int_{0}^{1}\mathrm{d}u\,\frac{\arcsin{\left(u\right)}}{u\sqrt{1-u^{2}}};~~~\small{\left[t=u^{2}\right]}\\ &=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\,\frac{\varphi}{\sin{\left(\varphi\right)}};~~~\small{\left[\arcsin{\left(u\right)}=\varphi\right]}\\ &=-\int_{0}^{\frac{\pi}{2}}\mathrm{d}\varphi\,\ln{\left(\tan{\left(\frac{\varphi}{2}\right)}\right)};~~~\small{I.B.P.s}\\ &=-\int_{0}^{1}\mathrm{d}t\,\frac{2\ln{\left(t\right)}}{1+t^{2}};~~~\small{\left[\tan{\left(\frac{\varphi}{2}\right)}=t\right]}\\ &=\int_{0}^{1}\mathrm{d}t\,\frac{2\arctan{\left(t\right)}}{t};~~~\small{I.B.P.s}\\ &=2\operatorname{Ti}_{2}{\left(1\right)}\\ &=2\,G.\blacksquare\\ \end{align}$$
As an addendum to the previous answer, it can be shown (through the FL-expansion of $\frac{\arcsin\sqrt{x}}{\sqrt{x}}$) that
$$\phantom{}_4 F_3\left(\tfrac{1}{2},\tfrac{1}{2},1,1;\tfrac{3}{2},\tfrac{3}{2},\tfrac{3}{2};1\right)=4\text{ Im } \text{Li}_3\left(\frac{1+i}{2}\right)-\frac{\pi^3}{32}-\frac{\pi}{8}\log^2(2).$$