Progress indicator during pandas operations
Solution 1:
Due to popular demand, I've added pandas
support in tqdm
(pip install "tqdm>=4.9.0"
). Unlike the other answers, this will not noticeably slow pandas down -- here's an example for DataFrameGroupBy.progress_apply
:
import pandas as pd
import numpy as np
from tqdm import tqdm
# from tqdm.auto import tqdm # for notebooks
# Create new `pandas` methods which use `tqdm` progress
# (can use tqdm_gui, optional kwargs, etc.)
tqdm.pandas()
df = pd.DataFrame(np.random.randint(0, int(1e8), (10000, 1000)))
# Now you can use `progress_apply` instead of `apply`
df.groupby(0).progress_apply(lambda x: x**2)
In case you're interested in how this works (and how to modify it for your own callbacks), see the examples on GitHub, the full documentation on PyPI, or import the module and run help(tqdm)
. Other supported functions include map
, applymap
, aggregate
, and transform
.
EDIT
To directly answer the original question, replace:
df_users.groupby(['userID', 'requestDate']).apply(feature_rollup)
with:
from tqdm import tqdm
tqdm.pandas()
df_users.groupby(['userID', 'requestDate']).progress_apply(feature_rollup)
Note: tqdm <= v4.8:
For versions of tqdm below 4.8, instead of tqdm.pandas()
you had to do:
from tqdm import tqdm, tqdm_pandas
tqdm_pandas(tqdm())
Solution 2:
To tweak Jeff's answer (and have this as a reuseable function).
def logged_apply(g, func, *args, **kwargs):
step_percentage = 100. / len(g)
import sys
sys.stdout.write('apply progress: 0%')
sys.stdout.flush()
def logging_decorator(func):
def wrapper(*args, **kwargs):
progress = wrapper.count * step_percentage
sys.stdout.write('\033[D \033[D' * 4 + format(progress, '3.0f') + '%')
sys.stdout.flush()
wrapper.count += 1
return func(*args, **kwargs)
wrapper.count = 0
return wrapper
logged_func = logging_decorator(func)
res = g.apply(logged_func, *args, **kwargs)
sys.stdout.write('\033[D \033[D' * 4 + format(100., '3.0f') + '%' + '\n')
sys.stdout.flush()
return res
Note: the apply progress percentage updates inline. If your function stdouts then this won't work.
In [11]: g = df_users.groupby(['userID', 'requestDate'])
In [12]: f = feature_rollup
In [13]: logged_apply(g, f)
apply progress: 100%
Out[13]:
...
As usual you can add this to your groupby objects as a method:
from pandas.core.groupby import DataFrameGroupBy
DataFrameGroupBy.logged_apply = logged_apply
In [21]: g.logged_apply(f)
apply progress: 100%
Out[21]:
...
As mentioned in the comments, this isn't a feature that core pandas would be interested in implementing. But python allows you to create these for many pandas objects/methods (doing so would be quite a bit of work... although you should be able to generalise this approach).