Eliminating all data over a given percentile
Solution 1:
Use the Series.quantile()
method:
In [48]: cols = list('abc')
In [49]: df = DataFrame(randn(10, len(cols)), columns=cols)
In [50]: df.a.quantile(0.95)
Out[50]: 1.5776961953820687
To filter out rows of df
where df.a
is greater than or equal to the 95th percentile do:
In [72]: df[df.a < df.a.quantile(.95)]
Out[72]:
a b c
0 -1.044 -0.247 -1.149
2 0.395 0.591 0.764
3 -0.564 -2.059 0.232
4 -0.707 -0.736 -1.345
5 0.978 -0.099 0.521
6 -0.974 0.272 -0.649
7 1.228 0.619 -0.849
8 -0.170 0.458 -0.515
9 1.465 1.019 0.966
Solution 2:
numpy is much faster than Pandas for this kind of things :
numpy.percentile(df.a,95) # attention : the percentile is given in percent (5 = 5%)
is equivalent but 3 times faster than :
df.a.quantile(.95) # as you already noticed here it is ".95" not "95"
so for your code, it gives :
df[df.a < np.percentile(df.a,95)]
Solution 3:
You can use query for a more concise option:
df.query('ms < ms.quantile(.95)')