For which $n$ can $(a, nb, c)$ and $(b, c, d)$ be Pythagorean triples?
Fermat proved that if $(a, b, c)$ is a Pythagorean triple, then $(b, c, d)$ cannot be a Pythagorean triple.
Suppose $(a, nb, c)$ form a Pythagorean triple. Can $(b, c, d)$ be a Pythagorean triple? For which $n$ is this possible?
Another formulation is the following Diophatine system of equations:
$$a^2 + n^2b^2 = c^2$$ $$c^2 + b^2 = d^2$$
Fermat's theorem is then that $n$ cannot equal 1.
Searching with a computer for $d < 50,000$ and $n < 100$, I have found solutions for $n = 6, 16, 30, 48, 84$. For example, $n = 6$ has the solution $(a, b, c, d) = (99, 28, 195, 197)$ because $(99, 6*28, 195)$ and $(28, 195, 197)$ are both triples.
I am especially interested if there are any $n \neq 1$ that can be ruled out.
Solution 1:
An infinite family for even $n$: Given integer $t \geq 2,$ $$ n = 2 t^2 - 2, \; \; u = 2 t^2 - 1, \; \; v = 2t,$$ $$ a = (t^2 - 1)(u^2 - v^2), \; \; b = u v, \; \; c = (t^2 - 1)(u^2 + v^2), \; \; d = \mbox{something} $$
In the lists below, $\displaystyle\alpha=\frac{2\,u\,v}{b}$ and $\displaystyle\beta=\frac{a}{u^2-v^2}=\frac{c}{u^2+v^2}$ are integers such that $\alpha\beta = n$. For ex, if $n=36$, then,
$$\small\alpha=\frac{2\,u\,v}b =\frac{2\times728\times291}{35308}=12$$ $$\small\beta=\frac{1335909}{728^2-291^2}=\frac{1843995}{728^2+291^2} =3$$
and $\alpha\beta=36$.
I. Data for a handful of odd $n$:
13 a: 230153 b: 12792 c: 283945 d: 284233 u: 507 v: 164
15 a: 32625 b: 3472 c: 61455 d: 61553 u: 56 v: 31
23 a: 523367 b: 57072 c: 1413145 d: 1414297 u: 984 v: 667
27 a: 206703 b: 3848 c: 231345 d: 231377 u: 156 v: 37
89 a: 11534489 b: 700920 c: 63439289 d: 63443161 u: 649 v: 540
105 a: 1516207 b: 36576 c: 4128943 d: 4129105 u: 635 v: 432
II. Data for even $n$:
6 a: 99 b: 28 c: 195 d: 197 u: 7 v: 4
10 a: 619285 b: 75012 c: 972725 d: 975613 u: 399 v: 188
16 a: 1012 b: 51 c: 1300 d: 1301 u: 17 v: 6
20 a: 440075 b: 43428 c: 973685 d: 974653 u: 376 v: 231
30 a: 13455 b: 248 c: 15375 d: 15377 u: 31 v: 8
36 a: 1335909 b: 35308 c: 1843995 d: 1844333 u: 728 v: 291
48 a: 27612 b: 245 c: 30012 d: 30013 u: 49 v: 10
60 a: 432693 b: 29876 c: 1844043 d: 1844285 u: 616 v: 485
70 a: 171395 b: 852 c: 181475 d: 181477 u: 71 v: 12
82 a: 154775 b: 5544 c: 480233 d: 480265 u: 88 v: 63
82 a: 10653071 b: 166440 c: 17313521 d: 17314321 u: 584 v: 285
84 a: 18819 b: 388 c: 37635 d: 37637 u: 97 v: 56
84 a: 32249 b: 3048 c: 258055 d: 258073 u: 144 v: 127
96 a: 221112 b: 679 c: 230520 d: 230521 u: 97 v: 14
110 a: 554389 b: 11940 c: 1425611 d: 1425661 u: 300 v: 199
120 a: 25925 b: 1932 c: 233285 d: 233293 u: 161 v: 144
126 a: 999999 b: 2032 c: 1032255 d: 1032257 u: 127 v: 16
128 a: 23706016 b: 63729 c: 25070240 d: 25070321 u: 873 v: 146
160 a: 1023880 b: 1449 c: 1049800 d: 1049801 u: 161 v: 18
176 a: 2514688 b: 20895 c: 4455088 d: 4455137 u: 199 v: 105
182 a: 163163 b: 6612 c: 1214395 d: 1214413 u: 87 v: 76
198 a: 3880899 b: 3980 c: 3960099 d: 3960101 u: 199 v: 20
224 a: 11390372 b: 87555 c: 22680028 d: 22680197 u: 780 v: 449
240 a: 3455820 b: 2651 c: 3513900 d: 3513901 u: 241 v: 22
286 a: 11696399 b: 6888 c: 11861135 d: 11861137 u: 287 v: 24
336 a: 9483012 b: 4381 c: 9596580 d: 9596581 u: 337 v: 26
348 a: 17692987 b: 17292 c: 18688325 d: 18688333 u: 792 v: 131
390 a: 29658915 b: 10948 c: 29964675 d: 29964677 u: 391 v: 28
408 a: 30845259 b: 63460 c: 40271691 d: 40271741 u: 835 v: 304
432 a: 334020 b: 1067 c: 569244 d: 569245 u: 194 v: 99
448 a: 2621444 b: 2379 c: 2829820 d: 2829821 u: 312 v: 61
448 a: 22478512 b: 6735 c: 22680112 d: 22680113 u: 449 v: 30
510 a: 66324735 b: 16352 c: 66846975 d: 66846977 u: 511 v: 32
center of C++ program for odd $n$
int main()
{
for( mpz_class k = 1; k <= 700; k += 2){
for( mpz_class u = 2; u <= 1500; ++u){
for(mpz_class v = 1; v < u; ++v){
mpz_class d2 = k * k * u * u * u * u + (2 * k * k + 4) * u * u * v * v + k * k * v * v * v * v;
if( mp_SquareQ(d2) && mp_GCD(u,v) == 1 )
{
mpz_class a,b,c,d, g;
a = k * (u * u - v * v);
b = 2 * u * v;
c = k * ( u * u + v * v) ;
d = mp_Sqrt(d2);
g = mp_four_GCD(a,b,c,d);
a /= g; b /= g; c /= g; d /= g;
cout << k << " a: " << a << " b: " << b << " c: " << c << " d: " << d << " u: " << u << " v: " << v << endl;
}
}}}
return 0 ;
}
C++ program for even $n$
int main()
{
for( mpz_class k = 1; k <= 300; k += 1){
for( mpz_class u = 2; u <= 500; ++u){
for(mpz_class v = 1; v < u; ++v){
mpz_class d2 = k * k * u * u * u * u + (2 * k * k + 1) * u * u * v * v + k * k * v * v * v * v;
if( mp_SquareQ(d2) && mp_GCD(u,v) == 1 )
{
mpz_class a,b,c,d, g;
a = k * (u * u - v * v);
b = u * v;
c = k * ( u * u + v * v) ;
d = mp_Sqrt(d2);
g = mp_four_GCD(a,b,c,d);
a /= g; b /= g; c /= g; d /= g;
cout << 2 * k << " a: " << a << " b: " << b << " c: " << c << " d: " << d << " u: " << u << " v: " << v << endl;
}
}}}
return 0 ;
}
Solution 2:
An Attempt
You have $a^2+\left(n^2+1\right)b^2=d^2$. All integral solutions $(a,b,d)$ to this equation satisfies (1) $|a|=|d|$ and $b=0$, or (2) $d\neq 0$ and $\left(\frac{a}{d},\frac{b}{d}\right)=\left(\frac{\left(n^2+1\right)r^2-1}{\left(n^2+1\right)r^2+1},\frac{2r}{\left(n^2+1\right)r^2+1}\right)$ for some $r\in\mathbb{Q}$.
Now, if $b^2+c^2=d^2$, then (1) $|c|=|d|$ and $b=0$, or (2) $d\neq 0$ and $\left(\frac{b}{d},\frac{c}{d}\right)=\left(\frac{2s}{s^2+1},\frac{s^2-1}{s^2+1}\right)$ for some $s\in\mathbb{Q}$. Thus, we have to find $r,s\in\mathbb{Q}$ such that $$\frac{r}{\left(n^2+1\right)r^2+1}=\frac{s}{s^2+1}\,.$$ Consequently, $$rs^2-\big(\left(n^2+1\right)r^2+1\big)s+r=0\,.$$ This means $$\big(\left(n^2+1\right)r^2+1\big)^2-4r^2=q^2$$ for some $q\in\mathbb{Q}$. Hence, $$\left(n^2+1\right)^2r^4+2\left(n^2-1\right)r^2+1=q^2\,.$$ Therefore, we have $$\left(\left(n^2+1\right)r^2+\frac{n^2-1}{n^2+1}\right)^2+\left(\frac{2n}{n^2+1}\right)^2=q^2\,.$$
We have again run into a Pythagorean problem. Using a similar argument, the problem boils down to finding $(r,u)\in\mathbb{Q}\times\mathbb{Q}$ satisfying $u\neq 0$ and $$\frac{\left(n^2+1\right)^2r^2+\left(n^2-1\right)}{n}=\frac{u^2-1}{u}\,.$$ For example, $(n,r,u)=\left(6,\frac27,-\frac2{49}\right)$ produces $(n,a,b,c,d)=(6,99,28,195,197)$. I do not have any idea how to proceed further than this. (To be honest, I haven't reduced the number of variables at all. Being rationals, $r$ and $u$ each account for $2$ integer variables.)
Will Jagy's infinite family is produced by $$(n,r,s,q,u)=\left(2\left(t^2-1\right),\frac{t}{2t^2-1},t\left(2t^2-1\right),\frac{4t^6-4t^4+t^2-1}{\left(2t^2-1\right)^2},-\frac{2}{\left(2t^2-1\right)^2}\right)$$ for $t=2,3,\ldots$.