Take random sample by group

I have a data frame made by almost 50,000 rows spread in 15 different IDs (every ID has thousands of observations). Data frame looks like:

        ID  Year    Temp    ph
1       P1  1996    11.3    6.80
2       P1  1996    9.7     6.90
3       P1  1997    9.8     7.10
...
2000    P2  1997    10.5    6.90
2001    P2  1997    9.9     7.00
2002    P2  1997    10.0    6.93

I want to take 500 random rows for every ID (so 500 for P1, 500 for P2,....) and create a new df. I try:

new_df<-df[df$ID %in% sample(unique(dfID),500),]

But it takes randomly one ID, while I need 500 random rows for every ID.


Solution 1:

This is available as the slice_sample function in dplyr:

library(dplyr)
new_df <- df %>% group_by(ID) %>% slice_sample(n=500)

In older versions of R, the function was called sample_n, which has been deprecated.

Solution 2:

Try this:

library(plyr)
ddply(df,.(ID),function(x) x[sample(nrow(x),500),])

Solution 3:

Here is one approach in base R.

First, the prerequisite sample data to work with:

set.seed(1)
mydf <- data.frame(ID = rep(1:3, each = 5), matrix(rnorm(45), ncol = 3))
mydf
#    ID         X1          X2          X3
# 1   1 -0.6264538 -0.04493361  1.35867955
# 2   1  0.1836433 -0.01619026 -0.10278773
# 3   1 -0.8356286  0.94383621  0.38767161
# 4   1  1.5952808  0.82122120 -0.05380504
# 5   1  0.3295078  0.59390132 -1.37705956
# 6   2 -0.8204684  0.91897737 -0.41499456
# 7   2  0.4874291  0.78213630 -0.39428995
# 8   2  0.7383247  0.07456498 -0.05931340
# 9   2  0.5757814 -1.98935170  1.10002537
# 10  2 -0.3053884  0.61982575  0.76317575
# 11  3  1.5117812 -0.05612874 -0.16452360
# 12  3  0.3898432 -0.15579551 -0.25336168
# 13  3 -0.6212406 -1.47075238  0.69696338
# 14  3 -2.2146999 -0.47815006  0.55666320
# 15  3  1.1249309  0.41794156 -0.68875569

Second, the sampling:

do.call(rbind, 
        lapply(split(mydf, mydf$ID), 
               function(x) x[sample(nrow(x), 3), ]))
#      ID         X1          X2         X3
# 1.2   1  0.1836433 -0.01619026 -0.1027877
# 1.1   1 -0.6264538 -0.04493361  1.3586796
# 1.5   1  0.3295078  0.59390132 -1.3770596
# 2.10  2 -0.3053884  0.61982575  0.7631757
# 2.9   2  0.5757814 -1.98935170  1.1000254
# 2.8   2  0.7383247  0.07456498 -0.0593134
# 3.13  3 -0.6212406 -1.47075238  0.6969634
# 3.12  3  0.3898432 -0.15579551 -0.2533617
# 3.15  3  1.1249309  0.41794156 -0.6887557

There is also strata from the sampling package, which is convenient when you want to sample different sizes from each group:

# install.packages("sampling")
library(sampling)
set.seed(1)
x <- strata(mydf, "ID", size = c(2, 3, 2), method = "srswor")
getdata(mydf, x)
#            X1          X2         X3 ID ID_unit Prob Stratum
# 2   0.1836433 -0.01619026 -0.1027877  1       2  0.4       1
# 5   0.3295078  0.59390132 -1.3770596  1       5  0.4       1
# 6  -0.8204684  0.91897737 -0.4149946  2       6  0.6       2
# 8   0.7383247  0.07456498 -0.0593134  2       8  0.6       2
# 9   0.5757814 -1.98935170  1.1000254  2       9  0.6       2
# 14 -2.2146999 -0.47815006  0.5566632  3      14  0.4       3
# 15  1.1249309  0.41794156 -0.6887557  3      15  0.4       3

Solution 4:

In case you have big datasets, a data.table solution could go like this:

library(data.table)

# Generate 26 mil rows random data
set.seed(2019)
dt <- data.table(c1 = sample(length(LETTERS)*10^6), 
                 c2 = sample(LETTERS, replace = TRUE))

# For each letter, sample 500 rows
dt_sample <- dt[, .SD[sample(x = .N, size = 500)], by = c2]

# We indeed sampled 500 rows for each letter
dt_sample[, .N, by = c2][order(c2)]
#>     c2   N
#>  1:  A 500
#>  2:  D 500
#>  3:  G 500
#>  4:  I 500
#>  5:  M 500
#>  6:  N 500
#>  7:  O 500
#>  8:  P 500
#>  9:  Q 500
#> 10:  R 500
#> 11:  S 500
#> 12:  T 500
#> 13:  U 500
#> 14:  V 500
#> 15:  W 500
#> 16:  Y 500
#> 17:  Z 500

Created on 2019-04-23 by the reprex package (v0.2.1)

In case your data is unbalanced in the sense that some groups happen to be smaller (as number of rows) than your desired sample size, then you need to set a defensive trick like sample size should be min(500, .N) - see sample random rows within each group in a data.table. So like:

dt[, .SD[sample(x = .N, size = min(500, .N))], by = c2]