Getting the integer index of a Pandas DataFrame row fulfilling a condition?
Solution 1:
Use Index.get_loc instead.
Reusing @unutbu's set up code, you'll achieve the same results.
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.arange(1,7).reshape(2,3),
columns = list('abc'),
index=pd.Series([2,5], name='b'))
>>> df
a b c
b
2 1 2 3
5 4 5 6
>>> df.index.get_loc(5)
1
Solution 2:
You could use np.where like this:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.arange(1,7).reshape(2,3),
columns = list('abc'),
index=pd.Series([2,5], name='b'))
print(df)
# a b c
# b
# 2 1 2 3
# 5 4 5 6
print(np.where(df.index==5)[0])
# [1]
print(np.where(df['c']==6)[0])
# [1]
The value returned is an array since there could be more than one row with a particular index or value in a column.
Solution 3:
With Index.get_loc and general condition:
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame(np.arange(1,7).reshape(2,3),
columns = list('abc'),
index=pd.Series([2,5], name='b'))
>>> df
a b c
b
2 1 2 3
5 4 5 6
>>> df.index.get_loc(df.index[df['b'] == 5][0])
1