Let $a,b,c>0$ and $a+b+c= 1$, how to prove the inequality $\frac{\sqrt{a}}{1-a}+\frac{\sqrt{b}}{1-b}+\frac{\sqrt{c}}{1-c}\geq \frac{3\sqrt{3}}{2}$?

Let $a,b,c>0$ and $a+b+c= 1$, how to prove the inequality $$\frac{\sqrt{a}}{1-a}+\frac{\sqrt{b}}{1-b}+\frac{\sqrt{c}}{1-c}\geq \frac{3\sqrt{3}}{2}$$?


Solution 1:

Although the function $f(x)=\sqrt{x}/(1-x)$ is not convex on (0,1), its tangent at $x=1/3$ lower bounds the function and passes through the origin. That is, for $0\leq x\leq 1$, we have $${\sqrt{x}\over 1-x}\geq {3\sqrt{3}\over2}\, x.$$

Plugging in $a,b,c$ and adding gives
$${\sqrt{a}\over 1-a}+{\sqrt{b}\over 1-b}+{\sqrt{c}\over 1-c}\geq {3\sqrt{3}\over2}.$$

Added reference: Exercise 8.1 on page 131 of The Cauchy-Schwarz Master Class by J. Michael Steele asks you to prove that for $p\geq 1$, and positive $a,b,c$, $${a^p\over b+c}+{b^p\over a+c}+{c^p\over a+b}\geq {1\over 2}\,3^{2-p}\,(a+b+c)^{p-1}.\tag1$$ He notes that for $p=1$ this reduces to Nesbitt's inequality. The inequality (1) fails for $0<p<p_c$, where $p_c={3\log(2)-2\log(3)\over \log(2)-\log(3)}=.29048$ by looking at $a=b=1/2$ and $c$ close to zero. But it holds again for $p=0$ by Jensen's inequality .

Solution 2:

$\sqrt{a} = x, b=y^2, c=z^2 => x^2+y^2+z^2=1$ We have to prove $$\frac{x}{y^{2}+z^{2}}+\frac{y}{x^{2}+z^{2}}+\frac{z}{x^{2}+y^{2}}\geq \frac{3\sqrt{3}}{2}$$: $$\frac{2\sqrt{3}}{3}x\left ( y^{2}+z^{2} \right )\leq \left ( x^{2}+\frac{1}{3} \right )\left ( y^{2}+z^{2} \right )\leq \frac{\left ( x^{2}+y^{2}+z^{2}+\frac{1}{3} \right )^{2}}{4}=\frac{4}{9}$$ Do it the same for $\frac{2\sqrt{3}}{3}y\left ( z^{2}+x^{2} \right ), \frac{2\sqrt{3}}{3}z\left ( y^{2}+x^{2} \right )$ So: $$\frac{leftside}{\frac{2\sqrt{3}}{3}}=\sum \frac{x^{2}}{\frac{2\sqrt{3}}{3}x\left ( y^{2}+z^{2} \right )}\geq \frac{\sum x^{2}}{\frac{4}{9}}=\frac{9}{4}$$ $$\Rightarrow leftside=\sum \frac{x}{y^{2}+z^{2}}\geq \frac{3\sqrt{3}}{2}$$