C++11 variable number of arguments, same specific type

Question is simple, how would I implement a function taking a variable number of arguments (alike the variadic template), however where all arguments have the same type, say int.

I was thinking about something alike this;

void func(int... Arguments)

Alternatively wont a recursive static assert on the types work?


Solution 1:

A possible solution is to make the parameter type a container that can be initialized by a brace initializer list, such as std::initializer_list<int> or std::vector<int>. For example:

#include <iostream>
#include <initializer_list>

void func(std::initializer_list<int> a_args)
{
    for (auto i: a_args) std::cout << i << '\n';
}

int main()
{
    func({4, 7});
    func({4, 7, 12, 14});
}

Solution 2:

Here's a version that removes the function from the overload set, instead of giving a static_assert. This is allows you to provide other overloads of the function that could be used when the types aren't all the same, rather than a fatal static_assert that can't be avoided.

#include <type_traits>

template<typename... T>
  struct all_same : std::false_type { };

template<>
  struct all_same<> : std::true_type { };

template<typename T>
  struct all_same<T> : std::true_type { };

template<typename T, typename... Ts>
  struct all_same<T, T, Ts...> : all_same<T, Ts...> { };

template<typename... T>
typename std::enable_if<all_same<T...>::value, void>::type
func(T...)
{ }

If you want to support perfect forwarding you probably want to decay the types before checking them, so that the function will accept a mix of lvalue and rvalue arguments as long as they have the same type:

template<typename... T>
typename std::enable_if<all_same<typename std::decay<T>::type...>::value, void>::type
func(T&&...)
{ }

Alternatively, if you have a general purpose trait for testing the logical conjunction you can do it using std::is_same instead of writing your own all_same:

template<typename T, typename... Ts>
typename std::enable_if<and_<is_same<T, Ts>...>::value, void>::type
func(T&&, Ts&&...)
{ }

Because this requires at least one argument you'd also need another overload to support the zero-argument case:

void func() { }

The and_ helper can be defined like so:

template<typename...>
  struct and_;

template<>
  struct and_<>
  : public std::true_type
  { };

template<typename B1>
  struct and_<B1>
  : public B1
  { };

template<typename B1, typename B2>
  struct and_<B1, B2>
  : public std::conditional<B1::value, B2, B1>::type
  { };

template<typename B1, typename B2, typename B3, typename... Bn>
  struct and_<B1, B2, B3, Bn...>
  : public std::conditional<B1::value, and_<B2, B3, Bn...>, B1>::type
  { };

Solution 3:

I think you can do this by specifying a concrete type when chewing your arguments out of the argument pack. Something like:

class MyClass{};
class MyOtherClass{};

void func()
{
    // do something
}

template< typename... Arguments >
void func( MyClass arg, Arguments ... args )
{
    // do something with arg
    func( args... );
    // do something more with arg
}


void main()
{
    MyClass a, b, c;
    MyOtherClass d;
    int i;
    float f;

    func( a, b, c );    // compiles fine
    func( i, f, d );    // cannot convert
}

In the generic case void func( MyClass arg, Arguments ... args ) would become void func( arg, Arguments ... args ) with a template type T.

Solution 4:

@Skeen How about this?

template <typename T>
void func_1(std::initializer_list<T>&& a) {
    // do something
} 

template <typename... T>
void func(T&&... a) {
    func_1({std::forward<T>(a)...});
} 

int main() {
    func(1, 2, 3);
    // func(1, 2, 3, 4.0); // OK doesn't compile
}

Solution 5:

If you don't want to use brace-based initializer_list/vector and want to keep the arguments separate in form of argument pack, then below solution checks it at compile time using recursive static_asserts:

#include<type_traits>

template<typename T1, typename T2, typename... Error>
struct is_same : std::false_type {};

template<typename T, typename... Checking>
struct is_same<T, T, Checking...> : is_same<T, Checking...> {}; 

template<typename T>
struct is_same<T,T> : std::true_type {};

template<typename... LeftMost>
void func (LeftMost&&... args)
{
  static_assert(is_same<typename std::decay<LeftMost>::type...>::value, 
                "All types are not same as 'LeftMost'");
  // ...
}

int main ()
{
  int var = 2;
  func(1,var,3,4,5);  // ok
  func(1,2,3,4.0,5); // error due to `static_assert` failure
}

Actually this solution would check all the arguments with respect to the first argument. Suppose it was double then everything would be checked against double.