Efficient way to rbind data.frames with different columns
UPDATE: See this updated answer instead.
UPDATE (eddi): This has now been implemented in version 1.8.11 as a fill
argument to rbind
. For example:
DT1 = data.table(a = 1:2, b = 1:2)
DT2 = data.table(a = 3:4, c = 1:2)
rbind(DT1, DT2, fill = TRUE)
# a b c
#1: 1 1 NA
#2: 2 2 NA
#3: 3 NA 1
#4: 4 NA 2
FR #4790 added now - rbind.fill (from plyr) like functionality to merge list of data.frames/data.tables
Note 1:
This solution uses data.table
's rbindlist
function to "rbind" list of data.tables and for this, be sure to use version 1.8.9 because of this bug in versions < 1.8.9.
Note 2:
rbindlist
when binding lists of data.frames/data.tables, as of now, will retain the data type of the first column. That is, if a column in first data.frame is character and the same column in the 2nd data.frame is "factor", then, rbindlist
will result in this column being a character. So, if your data.frame consisted of all character columns, then, your solution with this method will be identical to the plyr method. If not, the values will still be the same, but some columns will be character instead of factor. You'll have to convert to "factor" yourself after. Hopefully this behaviour will change in the future.
And now here's using data.table
(and benchmarking comparison with rbind.fill
from plyr
):
require(data.table)
rbind.fill.DT <- function(ll) {
# changed sapply to lapply to return a list always
all.names <- lapply(ll, names)
unq.names <- unique(unlist(all.names))
ll.m <- rbindlist(lapply(seq_along(ll), function(x) {
tt <- ll[[x]]
setattr(tt, 'class', c('data.table', 'data.frame'))
data.table:::settruelength(tt, 0L)
invisible(alloc.col(tt))
tt[, c(unq.names[!unq.names %chin% all.names[[x]]]) := NA_character_]
setcolorder(tt, unq.names)
}))
}
rbind.fill.PLYR <- function(ll) {
rbind.fill(ll)
}
require(microbenchmark)
microbenchmark(t1 <- rbind.fill.DT(ll), t2 <- rbind.fill.PLYR(ll), times=10)
# Unit: seconds
# expr min lq median uq max neval
# t1 <- rbind.fill.DT(ll) 10.8943 11.02312 11.26374 11.34757 11.51488 10
# t2 <- rbind.fill.PLYR(ll) 121.9868 134.52107 136.41375 184.18071 347.74724 10
# for comparison change t2 to data.table
setattr(t2, 'class', c('data.table', 'data.frame'))
data.table:::settruelength(t2, 0L)
invisible(alloc.col(t2))
setcolorder(t2, unique(unlist(sapply(ll, names))))
identical(t1, t2) # [1] TRUE
It should be noted that plyr
's rbind.fill
edges past this particular data.table
solution until list size of about 500.
Benchmarking plot:
Here's the plot on runs with list length of data.frames with seq(1000, 10000, by=1000)
. I've used microbenchmark
with 10 reps on each of these different list lengths.
Benchmarking gist:
Here's the gist for benchmarking, in case anyone wants to replicate the results.
Now that rbindlist
(and rbind
) for data.table
has improved functionality and speed with the recent changes/commits in v1.9.3 (development version), and dplyr
has a faster version of plyr
's rbind.fill
, named rbind_all
, this answer of mine seems a bit too outdated.
Here's the relevant NEWS entry for rbindlist
:
o 'rbindlist' gains 'use.names' and 'fill' arguments and is now implemented entirely in C. Closes #5249
-> use.names by default is FALSE for backwards compatibility (doesn't bind by
names by default)
-> rbind(...) now just calls rbindlist() internally, except that 'use.names'
is TRUE by default, for compatibility with base (and backwards compatibility).
-> fill by default is FALSE. If fill is TRUE, use.names has to be TRUE.
-> At least one item of the input list has to have non-null column names.
-> Duplicate columns are bound in the order of occurrence, like base.
-> Attributes that might exist in individual items would be lost in the bound result.
-> Columns are coerced to the highest SEXPTYPE, if they are different, if/when possible.
-> And incredibly fast ;).
-> Documentation updated in much detail. Closes DR #5158.
So, I've benchmarked the newer (and faster versions) on relatively bigger data below.
New Benchmark:
We'll create a total of 10,000 data.tables with columns ranging from 200-300 with the total number of columns after binding to be 500.
Functions to create data:
require(data.table) ## 1.9.3 commit 1267
require(dplyr) ## commit 1504 devel
set.seed(1L)
names = paste0("V", 1:500)
foo <- function() {
cols = sample(200:300, 1)
data = setDT(lapply(1:cols, function(x) sample(10)))
setnames(data, sample(names)[1:cols])
}
n = 10e3L
ll = vector("list", n)
for (i in 1:n) {
.Call("Csetlistelt", ll, i, foo())
}
And here are the timings:
## Updated timings on data.table v1.9.5 - three consecutive runs:
system.time(ans1 <- rbindlist(ll, fill=TRUE))
# user system elapsed
# 1.993 0.106 2.107
system.time(ans1 <- rbindlist(ll, fill=TRUE))
# user system elapsed
# 1.644 0.092 1.744
system.time(ans1 <- rbindlist(ll, fill=TRUE))
# user system elapsed
# 1.297 0.088 1.389
## dplyr's rbind_all - Timings for three consecutive runs
system.time(ans2 <- rbind_all(ll))
# user system elapsed
# 9.525 0.121 9.761
# user system elapsed
# 9.194 0.112 9.370
# user system elapsed
# 8.665 0.081 8.780
identical(ans1, setDT(ans2)) # [1] TRUE
There is still something to be gained if you parallelize both rbind.fill
and rbindlist
.
The results are done with data.table
version 1.8.8 as version 1.8.9 got bricked when I tried it with the parallelized function. So the results aren't identical between data.table
and plyr
, but they are identical within data.table
or plyr
solution. Meaning parallel plyr
matches to unparallel plyr
, and vice versa.
Here's the benchmark/scripts. The parallel.rbind.fill.DT
looks horrible, but that's the fastest one I could pull.
require(plyr)
require(data.table)
require(ggplot2)
require(rbenchmark)
require(parallel)
# data.table::rbindlist solutions
rbind.fill.DT <- function(ll) {
all.names <- lapply(ll, names)
unq.names <- unique(unlist(all.names))
rbindlist(lapply(seq_along(ll), function(x) {
tt <- ll[[x]]
setattr(tt, 'class', c('data.table', 'data.frame'))
data.table:::settruelength(tt, 0L)
invisible(alloc.col(tt))
tt[, c(unq.names[!unq.names %chin% all.names[[x]]]) := NA_character_]
setcolorder(tt, unq.names)
}))
}
parallel.rbind.fill.DT <- function(ll, cluster=NULL){
all.names <- lapply(ll, names)
unq.names <- unique(unlist(all.names))
if(is.null(cluster)){
ll.m <- rbindlist(lapply(seq_along(ll), function(x) {
tt <- ll[[x]]
setattr(tt, 'class', c('data.table', 'data.frame'))
data.table:::settruelength(tt, 0L)
invisible(alloc.col(tt))
tt[, c(unq.names[!unq.names %chin% all.names[[x]]]) := NA_character_]
setcolorder(tt, unq.names)
}))
}else{
cores <- length(cluster)
sequ <- as.integer(seq(1, length(ll), length.out = cores+1))
Call <- paste(paste("list", seq(cores), sep=""), " = ll[", c(1, sequ[2:cores]+1), ":", sequ[2:(cores+1)], "]", sep="", collapse=", ")
ll <- eval(parse(text=paste("list(", Call, ")")))
rbindlist(clusterApply(cluster, ll, function(ll, unq.names){
rbindlist(lapply(seq_along(ll), function(x, ll, unq.names) {
tt <- ll[[x]]
setattr(tt, 'class', c('data.table', 'data.frame'))
data.table:::settruelength(tt, 0L)
invisible(alloc.col(tt))
tt[, c(unq.names[!unq.names %chin% colnames(tt)]) := NA_character_]
setcolorder(tt, unq.names)
}, ll=ll, unq.names=unq.names))
}, unq.names=unq.names))
}
}
# plyr::rbind.fill solutions
rbind.fill.PLYR <- function(ll) {
rbind.fill(ll)
}
parallel.rbind.fill.PLYR <- function(ll, cluster=NULL, magicConst=400){
if(is.null(cluster) | ceiling(length(ll)/magicConst) < length(cluster)){
rbind.fill(ll)
}else{
cores <- length(cluster)
sequ <- as.integer(seq(1, length(ll), length.out = ceiling(length(ll)/magicConst)))
Call <- paste(paste("list", seq(cores), sep=""), " = ll[", c(1, sequ[2:(length(sequ)-1)]+1), ":", sequ[2:length(sequ)], "]", sep="", collapse=", ")
ll <- eval(parse(text=paste("list(", Call, ")")))
rbind.fill(parLapply(cluster, ll, rbind.fill))
}
}
# Function to generate sample data of varying list length
set.seed(45)
sample.fun <- function() {
nam <- sample(LETTERS, sample(5:15))
val <- data.frame(matrix(sample(letters, length(nam)*10,replace=TRUE),nrow=10))
setNames(val, nam)
}
ll <- replicate(10000, sample.fun())
cl <- makeCluster(4, type="SOCK")
clusterEvalQ(cl, library(data.table))
clusterEvalQ(cl, library(plyr))
benchmark(t1 <- rbind.fill.PLYR(ll),
t2 <- rbind.fill.DT(ll),
t3 <- parallel.rbind.fill.PLYR(ll, cluster=cl, 400),
t4 <- parallel.rbind.fill.DT(ll, cluster=cl),
replications=5)
stopCluster(cl)
# Results for rbinding 10000 dataframes
# done with 4 cores, i5 3570k and 16gb memory
# test reps elapsed relative
# rbind.fill.PLYR 5 321.80 16.682
# rbind.fill.DT 5 26.10 1.353
# parallel.rbind.fill.PLYR 5 28.00 1.452
# parallel.rbind.fill.DT 5 19.29 1.000
# checking are results equal
t1 <- as.matrix(t1)
t2 <- as.matrix(t2)
t3 <- as.matrix(t3)
t4 <- as.matrix(t4)
t1 <- t1[order(t1[, 1], t1[, 2]), ]
t2 <- t2[order(t2[, 1], t2[, 2]), ]
t3 <- t3[order(t3[, 1], t3[, 2]), ]
t4 <- t4[order(t4[, 1], t4[, 2]), ]
identical(t2, t4) # TRUE
identical(t1, t3) # TRUE
identical(t1, t2) # FALSE, mismatch between plyr and data.table
As you can see parallesizing rbind.fill
made it comparable to data.table
, and you could get marginal increase of speed by parallesizing data.table
even with this low of a dataframe count.
simply dplyr::bind_rows
will do the job, as
library(dplyr)
merged_list <- bind_rows(ll)
#check it
> nrow(merged_list)
[1] 100000
> ncol(merged_list)
[1] 26
Time taken
> system.time(merged_list <- bind_rows(ll))
user system elapsed
0.29 0.00 0.28