Converting a column within pandas dataframe from int to string

I have a dataframe in pandas with mixed int and str data columns. I want to concatenate first the columns within the dataframe. To do that I have to convert an int column to str. I've tried to do as follows:

mtrx['X.3'] = mtrx.to_string(columns = ['X.3'])

or

mtrx['X.3'] = mtrx['X.3'].astype(str)

but in both cases it's not working and I'm getting an error saying "cannot concatenate 'str' and 'int' objects". Concatenating two str columns is working perfectly fine.


In [16]: df = DataFrame(np.arange(10).reshape(5,2),columns=list('AB'))

In [17]: df
Out[17]: 
   A  B
0  0  1
1  2  3
2  4  5
3  6  7
4  8  9

In [18]: df.dtypes
Out[18]: 
A    int64
B    int64
dtype: object

Convert a series

In [19]: df['A'].apply(str)
Out[19]: 
0    0
1    2
2    4
3    6
4    8
Name: A, dtype: object

In [20]: df['A'].apply(str)[0]
Out[20]: '0'

Don't forget to assign the result back:

df['A'] = df['A'].apply(str)

Convert the whole frame

In [21]: df.applymap(str)
Out[21]: 
   A  B
0  0  1
1  2  3
2  4  5
3  6  7
4  8  9

In [22]: df.applymap(str).iloc[0,0]
Out[22]: '0'

df = df.applymap(str)

Change data type of DataFrame column:

To int:

df.column_name = df.column_name.astype(np.int64)

To str:

df.column_name = df.column_name.astype(str)


Warning: Both solutions given ( astype() and apply() ) do not preserve NULL values in either the nan or the None form.

import pandas as pd
import numpy as np

df = pd.DataFrame([None,'string',np.nan,42], index=[0,1,2,3], columns=['A'])

df1 = df['A'].astype(str)
df2 =  df['A'].apply(str)

print df.isnull()
print df1.isnull()
print df2.isnull()

I believe this is fixed by the implementation of to_string()


Use the following code:

df.column_name = df.column_name.astype('str')

There are four ways to convert columns to string

1. astype(str)
df['column_name'] = df['column_name'].astype(str)

2. values.astype(str)
df['column_name'] = df['column_name'].values.astype(str)

3. map(str)
df['column_name'] = df['column_name'].map(str)

4. apply(str)
df['column_name'] = df['column_name'].apply(str)

Lets see the performance of each type

#importing libraries
import numpy as np
import pandas as pd
import time

#creating four sample dataframes using dummy data
df1 = pd.DataFrame(np.random.randint(1, 1000, size =(10000000, 1)), columns =['A'])
df2 = pd.DataFrame(np.random.randint(1, 1000, size =(10000000, 1)), columns =['A'])
df3 = pd.DataFrame(np.random.randint(1, 1000, size =(10000000, 1)), columns =['A'])
df4 = pd.DataFrame(np.random.randint(1, 1000, size =(10000000, 1)), columns =['A'])

#applying astype(str)
time1 = time.time()
df1['A'] = df1['A'].astype(str)
print('time taken for astype(str) : ' + str(time.time()-time1) + ' seconds')

#applying values.astype(str)
time2 = time.time()
df2['A'] = df2['A'].values.astype(str)
print('time taken for values.astype(str) : ' + str(time.time()-time2) + ' seconds')

#applying map(str)
time3 = time.time()
df3['A'] = df3['A'].map(str)
print('time taken for map(str) : ' + str(time.time()-time3) + ' seconds')

#applying apply(str)
time4 = time.time()
df4['A'] = df4['A'].apply(str)
print('time taken for apply(str) : ' + str(time.time()-time4) + ' seconds')

Output

time taken for astype(str): 5.472359895706177 seconds
time taken for values.astype(str): 6.5844292640686035 seconds
time taken for map(str): 2.3686647415161133 seconds
time taken for apply(str): 2.39758563041687 seconds

If you run multiple times, time for each technique might vary. On average map(str) and apply(str) are takes less time compare with remaining two techniques