Pandas groupby: How to get a union of strings
I have a dataframe like this:
A B C
0 1 0.749065 This
1 2 0.301084 is
2 3 0.463468 a
3 4 0.643961 random
4 1 0.866521 string
5 2 0.120737 !
Calling
In [10]: print df.groupby("A")["B"].sum()
will return
A
1 1.615586
2 0.421821
3 0.463468
4 0.643961
Now I would like to do "the same" for column "C". Because that column contains strings, sum() doesn't work (although you might think that it would concatenate the strings). What I would really like to see is a list or set of the strings for each group, i.e.
A
1 {This, string}
2 {is, !}
3 {a}
4 {random}
I have been trying to find ways to do this.
Series.unique() (http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.unique.html) doesn't work, although
df.groupby("A")["B"]
is a
pandas.core.groupby.SeriesGroupBy object
so I was hoping any Series method would work. Any ideas?
In [4]: df = read_csv(StringIO(data),sep='\s+')
In [5]: df
Out[5]:
A B C
0 1 0.749065 This
1 2 0.301084 is
2 3 0.463468 a
3 4 0.643961 random
4 1 0.866521 string
5 2 0.120737 !
In [6]: df.dtypes
Out[6]:
A int64
B float64
C object
dtype: object
When you apply your own function, there is not automatic exclusions of non-numeric columns. This is slower, though, than the application of .sum()
to the groupby
In [8]: df.groupby('A').apply(lambda x: x.sum())
Out[8]:
A B C
A
1 2 1.615586 Thisstring
2 4 0.421821 is!
3 3 0.463468 a
4 4 0.643961 random
sum
by default concatenates
In [9]: df.groupby('A')['C'].apply(lambda x: x.sum())
Out[9]:
A
1 Thisstring
2 is!
3 a
4 random
dtype: object
You can do pretty much what you want
In [11]: df.groupby('A')['C'].apply(lambda x: "{%s}" % ', '.join(x))
Out[11]:
A
1 {This, string}
2 {is, !}
3 {a}
4 {random}
dtype: object
Doing this on a whole frame, one group at a time. Key is to return a Series
def f(x):
return Series(dict(A = x['A'].sum(),
B = x['B'].sum(),
C = "{%s}" % ', '.join(x['C'])))
In [14]: df.groupby('A').apply(f)
Out[14]:
A B C
A
1 2 1.615586 {This, string}
2 4 0.421821 {is, !}
3 3 0.463468 {a}
4 4 0.643961 {random}
You can use the apply
method to apply an arbitrary function to the grouped data. So if you want a set, apply set
. If you want a list, apply list
.
>>> d
A B
0 1 This
1 2 is
2 3 a
3 4 random
4 1 string
5 2 !
>>> d.groupby('A')['B'].apply(list)
A
1 [This, string]
2 [is, !]
3 [a]
4 [random]
dtype: object
If you want something else, just write a function that does what you want and then apply
that.
You may be able to use the aggregate
(or agg
) function to concatenate the values. (Untested code)
df.groupby('A')['B'].agg(lambda col: ''.join(col))
You could try this:
df.groupby('A').agg({'B':'sum','C':'-'.join})