How to convert OpenDocument spreadsheets to a pandas DataFrame?
This is available natively in pandas 0.25. So long as you have odfpy installed (conda install odfpy OR pip install odfpy) you can do
pd.read_excel("the_document.ods", engine="odf")
You can read ODF (Open Document Format .ods
) documents in Python using the following modules:
- odfpy / read-ods-with-odfpy
- ezodf
- pyexcel / pyexcel-ods
- py-odftools
- simpleodspy
Using ezodf, a simple ODS-to-DataFrame converter could look like this:
import pandas as pd
import ezodf
doc = ezodf.opendoc('some_odf_spreadsheet.ods')
print("Spreadsheet contains %d sheet(s)." % len(doc.sheets))
for sheet in doc.sheets:
print("-"*40)
print(" Sheet name : '%s'" % sheet.name)
print("Size of Sheet : (rows=%d, cols=%d)" % (sheet.nrows(), sheet.ncols()) )
# convert the first sheet to a pandas.DataFrame
sheet = doc.sheets[0]
df_dict = {}
for i, row in enumerate(sheet.rows()):
# row is a list of cells
# assume the header is on the first row
if i == 0:
# columns as lists in a dictionary
df_dict = {cell.value:[] for cell in row}
# create index for the column headers
col_index = {j:cell.value for j, cell in enumerate(row)}
continue
for j, cell in enumerate(row):
# use header instead of column index
df_dict[col_index[j]].append(cell.value)
# and convert to a DataFrame
df = pd.DataFrame(df_dict)
P.S.
ODF spreadsheet (*.ods files) support has been requested on the
pandas
issue tracker: https://github.com/pydata/pandas/issues/2311, but it is still not implemented.ezodf
was used in the unfinished PR9070 to implement ODF support in pandas. That PR is now closed (read the PR for a technical discussion), but it is still available as an experimental feature in thispandas
fork.- there are also some brute force methods to read directly from the XML code (here)
Here is a quick and dirty hack which uses ezodf module:
import pandas as pd
import ezodf
def read_ods(filename, sheet_no=0, header=0):
tab = ezodf.opendoc(filename=filename).sheets[sheet_no]
return pd.DataFrame({col[header].value:[x.value for x in col[header+1:]]
for col in tab.columns()})
Test:
In [92]: df = read_ods(filename='fn.ods')
In [93]: df
Out[93]:
a b c
0 1.0 2.0 3.0
1 4.0 5.0 6.0
2 7.0 8.0 9.0
NOTES:
- all other useful parameters like
header
,skiprows
,index_col
,parse_cols
are NOT implemented in this function - feel free to update this question if you want to implement them -
ezodf
depends onlxml
make sure you have it installed
Edit: Happily, this answer below is now out of date, if you can update to a recent Pandas version. If you'd still like to work from a Pandas version of your data, and update it from ODS only when needed, read on.
It seems the answer is No! And I would characterize the tools to read in ODS still ragged. If you're on POSIX, maybe the strategy of exporting to xlsx on the fly before using Pandas' very nice importing tools for xlsx is an option:
unoconv -f xlsx -o tmp.xlsx myODSfile.ods
Altogether, my code looks like:
import pandas as pd
import os
if fileOlderThan('tmp.xlsx','myODSfile.ods'):
os.system('unoconv -f xlsx -o tmp.xlsx myODSfile.ods ')
xl_file = pd.ExcelFile('tmp.xlsx')
dfs = {sheet_name: xl_file.parse(sheet_name)
for sheet_name in xl_file.sheet_names}
df=dfs['Sheet1']
Here fileOlderThan() is a function (see http://github.com/cpbl/cpblUtilities) which returns true if tmp.xlsx does not exist or is older than the .ods file.
Another option: read-ods-with-odfpy. This module takes an OpenDocument Spreadsheet as input, and returns a list, out of which a DataFrame can be created.