Prove that $a^{ab}+b^{bc}+c^{cd}+d^{da} \geq \pi$

If $a,b,c,d >0$, and $a+b+c+d=4$, prove that $$a^{ab}+b^{bc}+c^{cd}+d^{da} \geq \pi.$$

I don't think Jensen's inequality will help here, but I think first determining where equality holds will be useful. Maybe taking the logarithm or exponential of both sides will also be useful, but I want to in the end get rid of the plus signs in order to simplify it.


Solution 1:

TL;DR: The inequality has been proven for all cases except the following five:

  • $1 < a < 2$, $b < 1$, $c > 1$, $d < 1$

  • $1 < a < 2$, $b < 1$, $c < 1$, $d < 1$

  • $2 < a < 3$, $b < 0.207$, $c > 1$, $d < 1$

  • $2 < a < 3$, $b < 0.256$, $c < 1$, $d < 1$

  • $3 < a < 4$, $b < 0.129$, $c < 1$, $d < 1$


This partial answer heavily uses the results that for a real number $k>0$,

  • $\min x^{kx}=(\sqrt[e]{e^k})^{-1}$,

  • $k^{kx}>k^{kx_0}$ for $k>1$ and $x>x_0$,

  • $k^{kx}<k^{kx_0}$ for $k<1$ and $x>x_0$.

As the sum $$S=a^{ab}+b^{bc}+c^{cd}+d^{da}$$ is cyclic, we need only concern $a=1$ and $a>1$ to prove the truth of the inequality. Thus there are sixteen cases that we need to consider (note that in most cases the condition $a+b+c+d=4$ is implicitly used).

$1)$ $a=b=c=d=1$

Clearly $S=1+1+1+1>\pi$.

$2)$ $a=b=1$, $c>1$, $d<1$

As $c<2$, $S>1+1+1+(\sqrt[e]{e})^{-1}>\pi$.

$3)$ $a=b=1$, $c<1$, $d>1$

As $d<2$, $S>1+1+(\sqrt[e]{e^2})^{-1}+1>\pi$.

$4)$ $a=1$, $b>1$, $c>1$, $d<1$

We have $S>1+1+1+(\sqrt[e]{e})^{-1}>\pi$.

$5)$ $a=1$, $b>1$, $c<1$, $d>1$

As $d<2$, $S>1+1+(\sqrt[e]{e^2})^{-1}+1>\pi$.

$6)$ $a=1$, $b>1$, $c<1$, $d<1$

We have $S>1+1+(\sqrt[e]{e})^{-1}+(\sqrt[e]{e})^{-1}>\pi$.

$7)$ $a=1$, $b<1$, $c>1$, $d<1$

If $b\ge0.6$, $c\le2.4$ so $S\ge1+0.6^{0.6\cdot2.4}+1+(\sqrt[e]{e})^{-1}>\pi$. If $b<0.6$, $c>1.4$ so $S>1+(\sqrt[e]{e^3})^{-1}+\min\{1.4^{1.4d}+d^d\}>\pi$.

$8)$ $a=1$, $b<1$, $c<1$, $d>1$

If $b\ge0.89$, $d\le2.11$ so $S\ge1+(\sqrt[e]{e})^{-1}+(\sqrt[e]{e^{2.11}})^{-1}+1>\pi$. If $b<0.89$, $3>d>1.11$ so $S\ge 1+(\sqrt[e]{e})^{-1}+(\sqrt[e]{e^3})^{-1}+1.11^{1.11}>\pi$.

$9)$ $a=1$, $b<1$, $c>1$, $d>1$

As $c<2$, $S>1+(\sqrt[e]{e^2})^{-1}+1+1>\pi$.

$10)$ $a>1$, $b>1$, $c>1$, $d<1$

As $a<2$, $S>1+1+1+(\sqrt[e]{e^2})^{-1}>\pi$.

$11)$ $a>1$, $b>1$, $c<1$, $d>1$

As $d<2$, $S>1+1+(\sqrt[e]{e^2})^{-1}+1>\pi$.

$12)$ $a>1$, $b>1$, $c<1$, $d<1$

If $d\ge0.675$, $S>1+1+(\sqrt[e]{e^{0.675}})^{-1}+0.675^{0.675}>\pi$. If $a\ge2$, $d<0.675$, then $S>2^2+0+0+0>\pi$. If $a<2$, $d<0.675$, then $S>1+1+(\sqrt[e]{e})^{-1}+(\sqrt[e]{e^2})^{-1}>\pi$.

$13)$ $a>1$, $b<1$, $c>1$, $d<1$

If $3>a>2$, $c<2$ so $b\ge0.207$, $S>2^{2\cdot0.207}+(\sqrt[e]{e^2})^{-1}+1+(\sqrt[e]{e^3})^{-1}>\pi$.

$14)$ $a>1$, $b<1$, $c<1$, $d>1$

If $d\ge2$, $S>0+0+0+2^2>\pi$. If $d<2$, $S>1+(\sqrt[e]{e})^{-1}+(\sqrt[e]{e^2})^{-1}+1>\pi$.

$15)$ $a>1$, $b<1$, $c>1$, $d>1$

As $c<2$, $S>1+(\sqrt[e]{e^2})^{-1}+1+1>\pi$.

$16)$ $a>1$, $b<1$, $c<1$, $d<1$

If $4>a>3$, $b\ge0.129$, $S>3^{3\cdot0.129}+(\sqrt[e]{e})^{-1}+(\sqrt[e]{e})^{-1}+(\sqrt[e]{e^4})^{-1}>\pi$. If $3>a>2$, $b\ge0.256$, $S>2^{2\cdot0.256}+(\sqrt[e]{e})^{-1}+(\sqrt[e]{e})^{-1}+(\sqrt[e]{e^3})^{-1}>\pi$.