Prove $\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots$ converges to $\frac 1 2 $

Show that $$\frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots = \frac{1}{2}.$$

I'm not exactly sure what to do here, it seems awfully similar to Zeno's paradox. If the series continues infinitely then each term is just going to get smaller and smaller.

Is this an example where I should be making a Riemann sum and then taking the limit which would end up being $1/2$?


Solution 1:

Solution as per David Mitra's hint in a comment.


Write the given series as a telescoping series and evaluate its sum:

$$\begin{eqnarray*} S &=&\frac{1}{1\cdot 3}+\frac{1}{3\cdot 5}+\frac{1}{5\cdot 7}+\cdots \\ &=&\sum_{n=1}^{\infty }\frac{1}{\left( 2n-1\right) \left( 2n+1\right) } \\ &=&\sum_{n=1}^{\infty }\left( \frac{1}{2\left( 2n-1\right) }-\frac{1}{ 2\left( 2n+1\right) }\right)\quad\text{Partial fractions decomposition} \\ &=&\frac{1}{2}\sum_{n=1}^{\infty }\left( \frac{1}{2n-1}-\frac{1}{2n+1} \right) \qquad \text{Telescoping series} \\ &=&\frac{1}{2}\sum_{n=1}^{\infty }\left( a_{n}-a_{n+1}\right), \qquad a_{n}= \frac{1}{2n-1},a_{n+1}=\frac{1}{2\left( n+1\right) -1}=\frac{1}{2n+1} \\ &=&\frac{1}{2}\left( a_{1}-\lim_{n\rightarrow \infty }a_{n}\right) \qquad\text{see below} \\ &=&\frac{1}{2}\left( \frac{1}{2\cdot 1-1}-\lim_{n\rightarrow \infty }\frac{1 }{2n-1}\right) \\ &=&\frac{1}{2}\left( 1-0\right) \\ &=&\frac{1}{2}. \end{eqnarray*}$$

Added: The sum of the telescoping series $\sum_{n=1}^{\infty }\left( a_{n}-a_{n+1}\right)$ is the limit of the telescoping sum $\sum_{n=1}^{N}\left( a_{n}-a_{n+1}\right) $ as $N$ tends to $\infty$. Since

$$\begin{eqnarray*} \sum_{n=1}^{N}\left( a_{n}-a_{n+1}\right) &=&\left( a_{1}-a_{2}\right) +\left( a_{2}-a_{3}\right) +\ldots +\left( a_{N-1}-a_{N}\right) +\left( a_{N}-a_{N+1}\right) \\ &=&a_{1}-a_{2}+a_{2}-a_{3}+\ldots +a_{N-1}-a_{N}+a_{N}-a_{N+1} \\ &=&a_{1}-a_{N+1}, \end{eqnarray*}$$

we have

$$\begin{eqnarray*} \sum_{n=1}^{\infty }\left( a_{n}-a_{n+1}\right) &=&\lim_{N\rightarrow \infty }\sum_{n=1}^{N}\left( a_{n}-a_{n+1}\right) \\ &=&\lim_{N\rightarrow \infty }\left( a_{1}-a_{N+1}\right) \\ &=&a_{1}-\lim_{N\rightarrow \infty }a_{N+1} \\ &=&a_{1}-\lim_{N\rightarrow \infty }a_{N} \\ &=&a_{1}-\lim_{n\rightarrow \infty }a_{n}.\end{eqnarray*}$$

Solution 2:

You can prove it with partial sums: $$ S_n=\sum_{k=1}^n\frac{1}{(2k-1)(2k+1)}=\sum_{k=1}^n\left(\frac{1}{2(2k-1)}-\frac{1}{2(2k+1)}\right)=\frac{1}{2}\left(\sum_{k=1}^n\frac{1}{2k-1}-\sum_{k=2}^{n+1}\frac{1}{2k-1}\right) $$ $$ =\frac{1}{2}\left(\frac{1}{2(1)-1}-\frac{1}{2(n+1)-1}\right)=\frac{1}{2}-\frac{1}{2(2n+1)} $$ Hence, $$ \sum_{k=1}^\infty\frac{1}{(2k-1)(2k+1)}=\lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{1}{2}-\frac{1}{2(2n+1)}\right)=\frac{1}{2} $$