If $\varphi(x) = m$ has exactly two solutions is it possible that both solutions are even?
As I requested, here are the first twenty examples of numbers $m$ with two answers to $\phi(x)=m.$ I did not print out when $m+1$ was prime, those are the majority of the $m'$s
54 = 2 * 3^3 81 = 3^4 162 = 2 * 3^4
110 = 2 * 5 * 11 121 = 11^2 242 = 2 * 11^2
294 = 2 * 3 * 7^2 343 = 7^3 686 = 2 * 7^3
342 = 2 * 3^2 * 19 361 = 19^2 722 = 2 * 19^2
506 = 2 * 11 * 23 529 = 23^2 1058 = 2 * 23^2
580 = 2^2 * 5 * 29 649 = 11 * 59 1298 = 2 * 11 * 59
812 = 2^2 * 7 * 29 841 = 29^2 1682 = 2 * 29^2
930 = 2 * 3 * 5 * 31 961 = 31^2 1922 = 2 * 31^2
1144 = 2^3 * 11 * 13 1219 = 23 * 53 2438 = 2 * 23 * 53
1210 = 2 * 5 * 11^2 1331 = 11^3 2662 = 2 * 11^3
1456 = 2^4 * 7 * 13 1537 = 29 * 53 3074 = 2 * 29 * 53
1540 = 2^2 * 5 * 7 * 11 1633 = 23 * 71 3266 = 2 * 23 * 71
1660 = 2^2 * 5 * 83 1837 = 11 * 167 3674 = 2 * 11 * 167
1780 = 2^2 * 5 * 89 1969 = 11 * 179 3938 = 2 * 11 * 179
1804 = 2^2 * 11 * 41 1909 = 23 * 83 3818 = 2 * 23 * 83
1806 = 2 * 3 * 7 * 43 1849 = 43^2 3698 = 2 * 43^2
1936 = 2^4 * 11^2 2047 = 23 * 89 4094 = 2 * 23 * 89
2058 = 2 * 3 * 7^3 2401 = 7^4 4802 = 2 * 7^4
2162 = 2 * 23 * 47 2209 = 47^2 4418 = 2 * 47^2
2260 = 2^2 * 5 * 113 2497 = 11 * 227 4994 = 2 * 11 * 227
In the examples where the odd $x$ is squarefree, it seems that the prime factors are always $2 \pmod 3.$