Is there a closed form for $\sum_{k=0}^n \frac{x^k}{k!}$? [closed]

What is the closed form of $$\sum_{k=0}^n \frac{x^k}{k!}$$ as a function of $x$ and $n$?

Knowing that it converges to $e^x$ when $n\to \infty$.


$$\sum_{k=0}^n \frac{x^k}{k!}=\frac{ \Gamma (n+1,x)}{n!}e^x$$ where appears the incomplete gamma function.

Do not worry : you will learn about it sooner or later.