get dataframe row count based on conditions

Solution 1:

You are asking for the condition where all the conditions are true, so len of the frame is the answer, unless I misunderstand what you are asking

In [17]: df = DataFrame(randn(20,4),columns=list('ABCD'))

In [18]: df[(df['A']>0) & (df['B']>0) & (df['C']>0)]
Out[18]: 
           A         B         C         D
12  0.491683  0.137766  0.859753 -1.041487
13  0.376200  0.575667  1.534179  1.247358
14  0.428739  1.539973  1.057848 -1.254489

In [19]: df[(df['A']>0) & (df['B']>0) & (df['C']>0)].count()
Out[19]: 
A    3
B    3
C    3
D    3
dtype: int64

In [20]: len(df[(df['A']>0) & (df['B']>0) & (df['C']>0)])
Out[20]: 3

Solution 2:

For increased performance you should not evaluate the dataframe using your predicate. You can just use the outcome of your predicate directly as illustrated below:

In [1]: import pandas as pd
        import numpy as np
        df = pd.DataFrame(np.random.randn(20,4),columns=list('ABCD'))


In [2]: df.head()
Out[2]:
          A         B         C         D
0 -2.019868  1.227246 -0.489257  0.149053
1  0.223285 -0.087784 -0.053048 -0.108584
2 -0.140556 -0.299735 -1.765956  0.517803
3 -0.589489  0.400487  0.107856  0.194890
4  1.309088 -0.596996 -0.623519  0.020400

In [3]: %time sum((df['A']>0) & (df['B']>0))
CPU times: user 1.11 ms, sys: 53 µs, total: 1.16 ms
Wall time: 1.12 ms
Out[3]: 4

In [4]: %time len(df[(df['A']>0) & (df['B']>0)])
CPU times: user 1.38 ms, sys: 78 µs, total: 1.46 ms
Wall time: 1.42 ms
Out[4]: 4

Keep in mind that this technique only works for counting the number of rows that comply with your predicate.

Solution 3:

In Pandas, I like to use the shape attribute to get number of rows.

df[df.A > 0].shape[0]

gives the number of rows matching the condition A > 0, as desired.

Solution 4:

You can use the method query and get the shape of the resulting dataframe. For example:

   A  B  C
0  1  1  x
1  2  2  y
2  3  3  z

df.query("A == 2 & B > 1 & C != 'z'").shape[0]

Output:

1