Split a large pandas dataframe
Use np.array_split
:
Docstring:
Split an array into multiple sub-arrays.
Please refer to the ``split`` documentation. The only difference
between these functions is that ``array_split`` allows
`indices_or_sections` to be an integer that does *not* equally
divide the axis.
In [1]: import pandas as pd
In [2]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
...: 'foo', 'bar', 'foo', 'foo'],
...: 'B' : ['one', 'one', 'two', 'three',
...: 'two', 'two', 'one', 'three'],
...: 'C' : randn(8), 'D' : randn(8)})
In [3]: print df
A B C D
0 foo one -0.174067 -0.608579
1 bar one -0.860386 -1.210518
2 foo two 0.614102 1.689837
3 bar three -0.284792 -1.071160
4 foo two 0.843610 0.803712
5 bar two -1.514722 0.870861
6 foo one 0.131529 -0.968151
7 foo three -1.002946 -0.257468
In [4]: import numpy as np
In [5]: np.array_split(df, 3)
Out[5]:
[ A B C D
0 foo one -0.174067 -0.608579
1 bar one -0.860386 -1.210518
2 foo two 0.614102 1.689837,
A B C D
3 bar three -0.284792 -1.071160
4 foo two 0.843610 0.803712
5 bar two -1.514722 0.870861,
A B C D
6 foo one 0.131529 -0.968151
7 foo three -1.002946 -0.257468]
I wanted to do the same, and I had first problems with the split function, then problems with installing pandas 0.15.2, so I went back to my old version, and wrote a little function that works very well. I hope this can help!
# input - df: a Dataframe, chunkSize: the chunk size
# output - a list of DataFrame
# purpose - splits the DataFrame into smaller chunks
def split_dataframe(df, chunk_size = 10000):
chunks = list()
num_chunks = len(df) // chunk_size + 1
for i in range(num_chunks):
chunks.append(df[i*chunk_size:(i+1)*chunk_size])
return chunks