Getting an instance name inside class __init__() [duplicate]
Solution 1:
Well, there is almost a way to do it:
#!/usr/bin/env python
import traceback
class SomeObject():
def __init__(self, def_name=None):
if def_name == None:
(filename,line_number,function_name,text)=traceback.extract_stack()[-2]
def_name = text[:text.find('=')].strip()
self.defined_name = def_name
ThisObject = SomeObject()
print ThisObject.defined_name
# ThisObject
The traceback module allows you to peek at the code used to call SomeObject().
With a little string wrangling, text[:text.find('=')].strip()
you can
guess what the def_name should be.
However, this hack is brittle. For example, this doesn't work so well:
ThisObject,ThatObject = SomeObject(),SomeObject()
print ThisObject.defined_name
# ThisObject,ThatObject
print ThatObject.defined_name
# ThisObject,ThatObject
So if you were to use this hack, you have to bear in mind that you must call SomeObject() using simple python statement:
ThisObject = SomeObject()
By the way, as a further example of using traceback, if you define
def pv(var):
# stack is a list of 4-tuples: (filename, line number, function name, text)
# see http://docs.python.org/library/traceback.html#module-traceback
#
(filename,line_number,function_name,text)=traceback.extract_stack()[-2]
# ('x_traceback.py', 18, 'f', 'print_var(y)')
print('%s: %s'%(text[text.find('(')+1:-1],var))
then you can call
x=3.14
pv(x)
# x: 3.14
to print both the variable name and its value.
Solution 2:
Instances don't have names. By the time the global name ThisObject
gets bound to the instance created by evaluating the SomeObject
constructor, the constructor has finished running.
If you want an object to have a name, just pass the name along in the constructor.
def __init__(self, name):
self.name = name
Solution 3:
You can create a method inside your class that check all variables in the current frame and use hash()
to look for the self
variable.
The solution proposed here will return all the variables pointing to the instance object.
In the class below, isinstance()
is used to avoid problems when applying hash()
, since some objects like a numpy.array
or a list
, for example, are unhashable.
import inspect
class A(object):
def get_my_name(self):
ans = []
frame = inspect.currentframe().f_back
tmp = dict(frame.f_globals.items() + frame.f_locals.items())
for k, var in tmp.items():
if isinstance(var, self.__class__):
if hash(self) == hash(var):
ans.append(k)
return ans
The following test has been done:
def test():
a = A()
b = a
c = b
print c.get_my_name()
The result is:
test()
#['a', 'c', 'b']
Solution 4:
This cannot work, just imagine this: a = b = TheMagicObjet()
. Names have no effect on Values, they just point to them.