Form a big 2d array from multiple smaller 2d arrays

Solution 1:

import numpy as np
def blockshaped(arr, nrows, ncols):
    """
    Return an array of shape (n, nrows, ncols) where
    n * nrows * ncols = arr.size

    If arr is a 2D array, the returned array looks like n subblocks with
    each subblock preserving the "physical" layout of arr.
    """
    h, w = arr.shape
    return (arr.reshape(h//nrows, nrows, -1, ncols)
               .swapaxes(1,2)
               .reshape(-1, nrows, ncols))


def unblockshaped(arr, h, w):
    """
    Return an array of shape (h, w) where
    h * w = arr.size

    If arr is of shape (n, nrows, ncols), n sublocks of shape (nrows, ncols),
    then the returned array preserves the "physical" layout of the sublocks.
    """
    n, nrows, ncols = arr.shape
    return (arr.reshape(h//nrows, -1, nrows, ncols)
               .swapaxes(1,2)
               .reshape(h, w))

For example,

c = np.arange(24).reshape((4,6))
print(c)
# [[ 0  1  2  3  4  5]
#  [ 6  7  8  9 10 11]
#  [12 13 14 15 16 17]
#  [18 19 20 21 22 23]]

print(blockshaped(c, 2, 3))
# [[[ 0  1  2]
#   [ 6  7  8]]

#  [[ 3  4  5]
#   [ 9 10 11]]

#  [[12 13 14]
#   [18 19 20]]

#  [[15 16 17]
#   [21 22 23]]]

print(unblockshaped(blockshaped(c, 2, 3), 4, 6))
# [[ 0  1  2  3  4  5]
#  [ 6  7  8  9 10 11]
#  [12 13 14 15 16 17]
#  [18 19 20 21 22 23]]

Note that there is also superbatfish's blockwise_view. It arranges the blocks in a different format (using more axes) but it has the advantage of (1) always returning a view and (2) being capable of handing arrays of any dimension.

Solution 2:

Yet another (simple) approach:

threedarray = ...
twodarray = np.array(map(lambda x: x.flatten(), threedarray))
print(twodarray.shape)

Solution 3:

I hope I get you right, let's say we have a,b :

>>> a = np.array([[1,2] ,[3,4]])
>>> b = np.array([[5,6] ,[7,8]])
    >>> a
    array([[1, 2],
           [3, 4]])
    >>> b
    array([[5, 6],
           [7, 8]])

in order to make it one big 2d array use numpy.concatenate:

>>> c = np.concatenate((a,b), axis=1 )
>>> c
array([[1, 2, 5, 6],
       [3, 4, 7, 8]])