Euclidean algorithm (GCD) with multiple numbers?
So I'm writing a program in Python to get the GCD of any amount of numbers.
def GCD(numbers):
if numbers[-1] == 0:
return numbers[0]
# i'm stuck here, this is wrong
for i in range(len(numbers)-1):
print GCD([numbers[i+1], numbers[i] % numbers[i+1]])
print GCD(30, 40, 36)
The function takes a list of numbers. This should print 2. However, I don't understand how to use the the algorithm recursively so it can handle multiple numbers. Can someone explain?
updated, still not working:
def GCD(numbers):
if numbers[-1] == 0:
return numbers[0]
gcd = 0
for i in range(len(numbers)):
gcd = GCD([numbers[i+1], numbers[i] % numbers[i+1]])
gcdtemp = GCD([gcd, numbers[i+2]])
gcd = gcdtemp
return gcd
Ok, solved it
def GCD(a, b):
if b == 0:
return a
else:
return GCD(b, a % b)
and then use reduce, like
reduce(GCD, (30, 40, 36))
Solution 1:
Since GCD is associative, GCD(a,b,c,d)
is the same as GCD(GCD(GCD(a,b),c),d)
. In this case, Python's reduce
function would be a good candidate for reducing the cases for which len(numbers) > 2
to a simple 2-number comparison. The code would look something like this:
if len(numbers) > 2:
return reduce(lambda x,y: GCD([x,y]), numbers)
Reduce applies the given function to each element in the list, so that something like
gcd = reduce(lambda x,y:GCD([x,y]),[a,b,c,d])
is the same as doing
gcd = GCD(a,b)
gcd = GCD(gcd,c)
gcd = GCD(gcd,d)
Now the only thing left is to code for when len(numbers) <= 2
. Passing only two arguments to GCD
in reduce
ensures that your function recurses at most once (since len(numbers) > 2
only in the original call), which has the additional benefit of never overflowing the stack.
Solution 2:
You can use reduce
:
>>> from fractions import gcd
>>> reduce(gcd,(30,40,60))
10
which is equivalent to;
>>> lis = (30,40,60,70)
>>> res = gcd(*lis[:2]) #get the gcd of first two numbers
>>> for x in lis[2:]: #now iterate over the list starting from the 3rd element
... res = gcd(res,x)
>>> res
10
help on reduce
:
>>> reduce?
Type: builtin_function_or_method
reduce(function, sequence[, initial]) -> value
Apply a function of two arguments cumulatively to the items of a sequence,
from left to right, so as to reduce the sequence to a single value.
For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5). If initial is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.
Solution 3:
A solution to finding out the LCM of more than two numbers in PYTHON is as follow:
#finding LCM (Least Common Multiple) of a series of numbers
def GCD(a, b):
#Gives greatest common divisor using Euclid's Algorithm.
while b:
a, b = b, a % b
return a
def LCM(a, b):
#gives lowest common multiple of two numbers
return a * b // GCD(a, b)
def LCMM(*args):
#gives LCM of a list of numbers passed as argument
return reduce(LCM, args)
Here I've added +1 in the last argument of range() function because the function itself starts from zero (0) to n-1. Click the hyperlink to know more about range() function :
print ("LCM of numbers (1 to 5) : " + str(LCMM(*range(1, 5+1))))
print ("LCM of numbers (1 to 10) : " + str(LCMM(*range(1, 10+1))))
print (reduce(LCMM,(1,2,3,4,5)))
those who are new to python can read more about reduce() function by the given link.
Solution 4:
The GCD operator is commutative and associative. This means that
gcd(a,b,c) = gcd(gcd(a,b),c) = gcd(a,gcd(b,c))
So once you know how to do it for 2 numbers, you can do it for any number
To do it for two numbers, you simply need to implement Euclid's formula, which is simply:
// Ensure a >= b >= 1, flip a and b if necessary
while b > 0
t = a % b
a = b
b = t
end
return a
Define that function as, say euclid(a,b)
. Then, you can define gcd(nums)
as:
if (len(nums) == 1)
return nums[1]
else
return euclid(nums[1], gcd(nums[:2]))
This uses the associative property of gcd() to compute the answer
Solution 5:
Python 3.9 introduced multiple arguments version of math.gcd
, so you can use:
import math
math.gcd(30, 40, 36)
3.5 <= Python <= 3.8.x:
import functools
import math
functools.reduce(math.gcd, (30, 40, 36))
3 <= Python < 3.5:
import fractions
import functools
functools.reduce(fractions.gcd, (30, 40, 36))