Does $\sqrt{a+b} \le \sqrt a + \sqrt b$ hold for all positive real numbers a and b?

I thought of this a while ago, but can't make up a proof or a counterexample. Does anyone know more about this?

$$\sqrt{a+b} \le \sqrt a + \sqrt b , \forall a,b \in \mathbb R_+$$

Moreover, what happens with more variables? Say:

$$\sqrt{x_1+x_2+...+x_n} \le \sqrt x_1 +\sqrt x_2 + ... + \sqrt x_n $$

with $ x_i \in\mathbb R_+ \forall i \in \{1,2,...,n\} $

Or when $i = \mathbb N$

PS: I tried looking on the internet for this but I don't know how I would call this.


Hint:$$\big(\sqrt{a+b}\big)^2 - \big(\sqrt{a}+\sqrt{b}\big)^2 = \big(a+b\big)-\big(a+b+2\sqrt{ab}\big)=-2\sqrt{ab}$$


Hint $$\sqrt{a+b} \leq \sqrt{a+2\sqrt{ab}+b}=\sqrt{(\sqrt{a}+\sqrt{b})^2}$$

Same way $$\sqrt{x_1+...+x_n} \leq \sqrt{x_1+...+x_n+2(\sqrt{x_1x_2}+\sqrt{x_1x_2}+..+\sqrt{x_{n-1}x_n})}=\sqrt{\left(\sqrt{x_1}+...+\sqrt{x_n}\right)^2}$$


Suppose you have proved the inequality for $n=2$. Suppose it holds for $n\ge2$; then $$\def\vA{\vphantom{A}} \sqrt{x_1+\dots+x_n+x_{n+1}\vA} \le \sqrt{x_1+\dots+x_n\vA}+\sqrt{x_{n+1}\vA} \le \sqrt{x_1\vA}+\dots+\sqrt{x_n\vA}+\sqrt{x_{n+1}\vA} $$ The first $\le$ is from the case $n=2$, the second one from the induction hypothesis.

For the $n=2$ case, just square.