Cut() error - 'breaks' are not unique
I have following dataframe:
a
ID a.1 b.1 a.2 b.2
1 1 40.00 100.00 NA 88.89
2 2 100.00 100.00 100 100.00
3 3 50.00 100.00 75 100.00
4 4 66.67 59.38 NA 59.38
5 5 37.50 100.00 NA 100.00
6 6 100.00 100.00 100 100.00
When I apply the following code to this dataframe:
temp <- do.call(rbind,strsplit(names(df)[-1],".",fixed=TRUE))
dup.temp <- temp[duplicated(temp[,1]),]
res <- lapply(dup.temp[,1],function(i) {
breaks <- c(-Inf,quantile(a[,paste(i,1,sep=".")], na.rm=T),Inf)
cut(a[,paste(i,2,sep=".")],breaks)
})
the cut () function gives an error:
Error in cut.default(a[, paste(i, 2, sep = ".")], breaks) :
'breaks' are not unique
However, the same code works perfectly well on similar dataframe:
varnames<-c("ID", "a.1", "b.1", "c.1", "a.2", "b.2", "c.2")
a <-matrix (c(1,2,3,4, 5, 6, 7), 2,7)
colnames (a)<-varnames
df<-as.data.frame (a)
ID a.1 b.1 c.1 a.2 b.2 c.2
1 1 3 5 7 2 4 6
2 2 4 6 1 3 5 7
res <- lapply(dup.temp[,1],function(i) {
breaks <- c(-Inf,quantile(a[,paste(i,1,sep=".")], na.rm=T),Inf)
cut(a[,paste(i,2,sep=".")],breaks)
})
res
[[1]]
[1] (-Inf,3] (-Inf,3]
Levels: (-Inf,3] (3,3.25] (3.25,3.5] (3.5,3.75] (3.75,4] (4, Inf]
[[2]]
[1] (-Inf,5] (-Inf,5]
Levels: (-Inf,5] (5,5.25] (5.25,5.5] (5.5,5.75] (5.75,6] (6, Inf]
[[3]]
[1] (5.5,7] (5.5,7]
Levels: (-Inf,1] (1,2.5] (2.5,4] (4,5.5] (5.5,7] (7, Inf]
What it the reason for this error? How can it be fixed? Thank you.
Solution 1:
You get this error because quantile values in your data for columns b.1
, a.2
and b.2
are the same for some levels, so they can't be directly used as breaks values in function cut()
.
apply(a,2,quantile,na.rm=T)
ID a.1 b.1 a.2 b.2
0% 1.00 37.5000 59.38 75.0 59.3800
25% 2.25 42.5000 100.00 87.5 91.6675
50% 3.50 58.3350 100.00 100.0 100.0000
75% 4.75 91.6675 100.00 100.0 100.0000
100% 6.00 100.0000 100.00 100.0 100.0000
One way to solve this problem would be to put quantile()
inside unique()
function - so you will remove all quantile values that are not unique. This of course will make less breaking points if quantiles are not unique.
res <- lapply(dup.temp[,1],function(i) {
breaks <- c(-Inf,unique(quantile(a[,paste(i,1,sep=".")], na.rm=T)),Inf)
cut(a[,paste(i,2,sep=".")],breaks)
})
[[1]]
[1] <NA> (91.7,100] (58.3,91.7] <NA> <NA> (91.7,100]
Levels: (-Inf,37.5] (37.5,42.5] (42.5,58.3] (58.3,91.7] (91.7,100] (100, Inf]
[[2]]
[1] (59.4,100] (59.4,100] (59.4,100] (-Inf,59.4] (59.4,100] (59.4,100]
Levels: (-Inf,59.4] (59.4,100] (100, Inf]
Solution 2:
If you'd rather keep the number of quantiles, another option is to just add a little bit of jitter, e.g.
breaks = c(-Inf,quantile(a[,paste(i,1,sep=".")], na.rm=T),Inf)
breaks = breaks + seq_along(breaks) * .Machine$double.eps
Solution 3:
Instead of cut, you can use .bincode, that accepts a non unique vector of breaks.
Solution 4:
If you actually mean the 10% or 25% portions of your population when you say decile, quartile etc. and not the actual numeric values of the decile/quartile buckets, you can rank your values first, and apply the quantile
function on the ranks:
a <- c(1,1,1,2,3,4,5,6,7,7,7,7,99,0.5,100,54,3,100,100,100,11,11,12,11,0)
a_ranks <- rank(a, ties.method = "first")
decile <- cut(a_ranks, quantile(a_ranks, probs=0:10/10), include.lowest=TRUE, labels=FALSE)