Why is number of bits always(?) a power of two? [closed]
That's mostly a matter of tradition. It is not even always true. For example, floating-point units in processors (even contemporary ones) have 80-bits registers. And there's nothing that would force us to have 8-bit bytes instead of 13-bit bytes.
Sometimes this has mathematical reasoning. For example, if you decide to have an N bits byte and want to do integer multiplication you need exactly 2N bits to store the results. Then you also want to add/subtract/multiply those 2N-bits integers and now you need 2N-bits general-purpose registers for storing the addition/subtraction results and 4N-bits registers for storing the multiplication results.
http://en.wikipedia.org/wiki/Word_%28computer_architecture%29#Word_size_choice
Different amounts of memory are used to store data values with different degrees of precision. The commonly used sizes are usually a power of 2 multiple of the unit of address resolution (byte or word). Converting the index of an item in an array into the address of the item then requires only a shift operation rather than a multiplication. In some cases this relationship can also avoid the use of division operations. As a result, most modern computer designs have word sizes (and other operand sizes) that are a power of 2 times the size of a byte.
Partially, it's a matter of addressing. Having N bits of address allows you to address 2^N bits of memory at most, and the designers of hardware prefer to utilize the most of this capability. So, you can use 3 bits to address 8-bit bus etc...