infinite series involving harmonic numbers and zeta
Solution 1:
$$\sum_{n=1}^{+\infty} \frac{H_{n}}{n^{3}} = \sum_{n=1}^{+\infty} \frac{1}{n^{3}} \sum_{m=1}^{+\infty} \left( \frac{1}{m} - \frac{1}{m+n}\right) = \sum_{n=1}^{+\infty} \frac{1}{n^{3}} \sum_{m=1}^{+\infty} \frac{n}{m(m+n)} = \sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} \frac{m}{m^2 n^2 (m+n)} = \frac{1}{2} \left(\sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} \frac{m}{m^2 n^2(m+n)} + \sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} \frac{n}{m^2 n^2(m+n)} \right) = \frac{1}{2} \sum_{n=1}^{+\infty} \sum_{m=1}^{+\infty} \frac{1}{m^2 n^2} = \frac{1}{2} \zeta(2)^2 = \frac{1}{2} \left(\frac{\pi^{2}}{6}\right)^2 = \frac{\pi^{4}}{72} = \frac{5}{4} \zeta(4) $$
Solution 2:
See here: (father and son)
On An Intriguing Integral and Some Series Related to $\zeta(4)$ - David Borwein and Jonathan M. Borwein
Enjoy
Solution 3:
I appreciate all of the input.
I thought I would come back and post something I managed to come up with.
This is kind of based on the methods in my first post using the dilog.
I started by using the identity $-n\int_{0}^{1}(1-x)^{n-1}\ln(x)dx=-\sum_{k=1}^{n}\binom{n}{k}\frac{(-1)^{k}}{k}=H_{n}$.
Then, $\sum_{n=1}^{\infty}\frac{H_{n}}{n^{3}}=-\sum_{n=1}^{\infty}\frac{1}{n^{2}}\int_{0}^{1}(1-x)^{n-1}\ln(x)dx$
$=-\int_{0}^{1}\sum_{n=1}^{\infty}\frac{(1-x)^{n-1}\ln(x)}{n^{2}}dx$
Using the definition of the dilog, $Li_{2}(1-x)=\sum_{n=1}^{\infty}\frac{(1-x)^{n}}{n^{2}}$, I got:
$\sum_{n=1}^{\infty}\frac{H_{n}}{n^{3}}=-\int_{0}^{1}\frac{Li_{2}(1-x)\ln(x)}{1-x}dx$
$=\frac{1}{2}(Li_{2}(1-x))^{2} |_{0}^{1}$
$=\frac{1}{2}(Li_{2}(1))^{2}=\frac{1}{2}\left(\frac{{\pi}^{2}}{6}\right)^{2}$
$=\frac{{\pi}^{4}}{72}$.