Evaluating $\lim\limits_{n\to\infty} e^{-n} \sum\limits_{k=0}^{n} \frac{n^k}{k!}$
Solution 1:
The probabilistic way:
This is $P[N_n\leqslant n]$ where $N_n$ is a random variable with Poisson distribution of parameter $n$. Hence each $N_n$ is distributed like $X_1+\cdots+X_n$ where the random variables $(X_k)$ are independent and identically distributed with Poisson distribution of parameter $1$.
By the central limit theorem, $Y_n=\frac1{\sqrt{n}}(X_1+\cdots+X_n-n)$ converges in distribution to a standard normal random variable $Z$, in particular, $P[Y_n\leqslant 0]\to P[Z\leqslant0]$.
Finally, $P[Z\leqslant0]=\frac12$ and $[N_n\leqslant n]=[Y_n\leqslant 0]$ hence $P[N_n\leqslant n]\to\frac12$, QED.
The analytical way, completing your try:
Hence, I know that what I need to do is to find $\lim\limits_{n\to\infty}I_n$, where $$ I_n=\frac{e^{-n}}{n!}\int_{0}^n (n-t)^ne^tdt.$$
To begin with, let $u(t)=(1-t)e^t$, then $I_n=\dfrac{e^{-n}n^n}{n!}nJ_n$ with $$ J_n=\int_{0}^1 u(t)^n\mathrm dt. $$ Now, $u(t)\leqslant\mathrm e^{-t^2/2}$ hence $$ J_n\leqslant\int_0^1\mathrm e^{-nt^2/2}\mathrm dt\leqslant\int_0^\infty\mathrm e^{-nt^2/2}\mathrm dt=\sqrt{\frac{\pi}{2n}}. $$ Likewise, the function $t\mapsto u(t)\mathrm e^{t^2/2}$ is decreasing on $t\geqslant0$ hence $u(t)\geqslant c_n\mathrm e^{-t^2/2}$ on $t\leqslant1/n^{1/4}$, with $c_n=u(1/n^{1/4})\mathrm e^{-1/(2\sqrt{n})}$, hence $$ J_n\geqslant c_n\int_0^{1/n^{1/4}}\mathrm e^{-nt^2/2}\mathrm dt=\frac{c_n}{\sqrt{n}}\int_0^{n^{1/4}}\mathrm e^{-t^2/2}\mathrm dt=\frac{c_n}{\sqrt{n}}\sqrt{\frac{\pi}{2}}(1+o(1)). $$ Since $c_n\to1$, all this proves that $\sqrt{n}J_n\to\sqrt{\frac\pi2}$. Stirling formula shows that the prefactor $\frac{e^{-n}n^n}{n!}$ is equivalent to $\frac1{\sqrt{2\pi n}}$. Regrouping everything, one sees that $I_n\sim\frac1{\sqrt{2\pi n}}n\sqrt{\frac\pi{2n}}=\frac12$.
Moral: The probabilistic way is shorter, easier, more illuminating, and more fun.
Caveat: My advice in these matters is, clearly, horribly biased.
Solution 2:
Edited. I justified the application of the dominated convergence theorem.
By a simple calculation,
$$ \begin{align*} e^{-n}\sum_{k=0}^{n} \frac{n^k}{k!} &= \frac{e^{-n}}{n!} \sum_{k=0}^{n}\binom{n}{k} n^k (n-k)! \\ (1) \cdots \quad &= \frac{e^{-n}}{n!} \sum_{k=0}^{n}\binom{n}{k} n^k \int_{0}^{\infty} t^{n-k}e^{-t} \, dt\\ &= \frac{e^{-n}}{n!} \int_{0}^{\infty} (n+t)^{n}e^{-t} \, dt \\ (2) \cdots \quad &= \frac{1}{n!} \int_{n}^{\infty} t^{n}e^{-t} \, dt \\ &= 1 - \frac{1}{n!} \int_{0}^{n} t^{n}e^{-t} \, dt \\ (3) \cdots \quad &= 1 - \frac{\sqrt{n} (n/e)^n}{n!} \int_{0}^{\sqrt{n}} \left(1 - \frac{u}{\sqrt{n}} \right)^{n}e^{\sqrt{n}u} \, du. \end{align*}$$
We remark that
- In $\text{(1)}$, we utilized the famous formula $ n! = \int_{0}^{\infty} t^n e^{-t} \, dt$.
- In $\text{(2)}$, the substitution $t + n \mapsto t$ is used.
- In $\text{(3)}$, the substitution $t = n - \sqrt{n}u$ is used.
Then in view of the Stirling's formula, it suffices to show that
$$\int_{0}^{\sqrt{n}} \left(1 - \frac{u}{\sqrt{n}} \right)^{n}e^{\sqrt{n}u} \, du \xrightarrow{n\to\infty} \sqrt{\frac{\pi}{2}}.$$
The idea is to introduce the function
$$ g_n (u) = \left(1 - \frac{u}{\sqrt{n}} \right)^{n}e^{\sqrt{n}u} \mathbf{1}_{(0, \sqrt{n})}(u) $$
and apply pointwise limit to the integrand as $n \to \infty$. This is justified once we find a dominating function for the sequence $(g_n)$. But notice that if $0 < u < \sqrt{n}$, then
$$ \log g_n (u) = n \log \left(1 - \frac{u}{\sqrt{n}} \right) + \sqrt{n} u = -\frac{u^2}{2} - \frac{u^3}{3\sqrt{n}} - \frac{u^4}{4n} - \cdots \leq -\frac{u^2}{2}. $$
From this we have $g_n (u) \leq e^{-u^2 /2}$ for all $n$ and $g_n (u) \to e^{-u^2 / 2}$ as $n \to \infty$. Therefore by dominated convergence theorem and Gaussian integral,
$$ \int_{0}^{\sqrt{n}} \left(1 - \frac{u}{\sqrt{n}} \right)^{n}e^{\sqrt{n}u} \, du = \int_{0}^{\infty} g_n (u) \, du \xrightarrow{n\to\infty} \int_{0}^{\infty} e^{-u^2/2} \, du = \sqrt{\frac{\pi}{2}}. $$