C#: Implementation of, or alternative to, StrCmpLogicalW in shlwapi.dll
For natural sorting in my application I currently P/Invoke a function called StrCmpLogicalW in shlwapi.dll. I was thinking about trying to run my application under Mono, but then of course I can't have this P/Invoke stuff (as far as I know anyways).
Is it possible to see the implementation of that method somewhere, or is there a good, clean and efficient C# snippet which does the same thing?
My code currently looks like this:
[SuppressUnmanagedCodeSecurity]
internal static class SafeNativeMethods
{
[DllImport("shlwapi.dll", CharSet = CharSet.Unicode)]
public static extern int StrCmpLogicalW(string psz1, string psz2);
}
public class NaturalStringComparer : IComparer<string>
{
private readonly int modifier = 1;
public NaturalStringComparer() : this(false) {}
public NaturalStringComparer(bool descending)
{
if (descending) modifier = -1;
}
public int Compare(string a, string b)
{
return SafeNativeMethods.StrCmpLogicalW(a ?? "", b ?? "") * modifier;
}
}
So, what I'm looking for is an alternative to the above class which doesn't use an extern function.
Solution 1:
I just implemented natural string comparison in C#, perhaps someone might find it useful:
public class NaturalComparer : IComparer<string>
{
public int Compare(string x, string y)
{
if (x == null && y == null) return 0;
if (x == null) return -1;
if (y == null) return 1;
int lx = x.Length, ly = y.Length;
for (int mx = 0, my = 0; mx < lx && my < ly; mx++, my++)
{
if (char.IsDigit(x[mx]) && char.IsDigit(y[my]))
{
long vx = 0, vy = 0;
for (; mx < lx && char.IsDigit(x[mx]); mx++)
vx = vx * 10 + x[mx] - '0';
for (; my < ly && char.IsDigit(y[my]); my++)
vy = vy * 10 + y[my] - '0';
if (vx != vy)
return vx > vy ? 1 : -1;
}
if (mx < lx && my < ly && x[mx] != y[my])
return x[mx] > y[my] ? 1 : -1;
}
return lx - ly;
}
}
Solution 2:
http://www.interact-sw.co.uk/iangblog/2007/12/13/natural-sorting seems to be what you're looking for.
(and no, there is no managed equivalent to StrCmpLogicalW built into .NET)