Curious combinatorial summation
Solution 1:
Suppose the start point is $(a,b)$ and the end point is $(c,d)$, where $a\geq c$ and $d\geq b$.
From the general form of $F((k,1),(1,l))$, and the fact that paths from $(k,1)$ go through $(k-1,1)$ or $(k,2)$, you can deduce the general form of $F((k,2),(1,l))$.
Then $F((k,3),(1,l))$ and so on.
I got this formula:
$$F((a,b),(c,d))=\frac{(a+d-b-c)!(b+c-2)!}{(a+d-1)!(a-c)!(d-b)!}$$
The base case of the induction proof is $F((a,b),(a,b))=1/(a+b-1)$ because there is one path of a single vertex.
The recursive equation is
$$F((a,b),(c,d))=\frac1{a+b-1}\left[F((a-1,b),(c,d))+F((a,b+1),(c,d))\right]$$
$$=\frac1{a+b-1}\left[\frac{(a+d-b-c-1)!(b+c-2)!}{(a+d-2)!(a-c-1)!(d-b)!}+\frac{(a+d-b-c-1)!(b+c-1)!}{(a+d-1)!(a-c)!(d-b-1)!}\right]\\
=\frac1{a+b-1}\frac{(a+d-b-c-1)!(b+c-2)!}{(a+d-1)!(a-c)!(d-b)!}\cdot\\
\left[(a+d-1)(a-c)+(b+c-1)(d-b)\right]$$
The final factor equals $(a+b-1)(a-b-c+d)$, so the final answer is $F((a,b),(c,d))$ given above, and we only assumed $F((a,b),(c,d))$ was correct for values with a lower value of $a-b$.