Python equivalent of MATLAB's "ismember" function
Solution 1:
Before worrying about multiple cores, I would eliminate the linear scan in your ismember function by using a dictionary:
def ismember(a, b):
bind = {}
for i, elt in enumerate(b):
if elt not in bind:
bind[elt] = i
return [bind.get(itm, None) for itm in a] # None can be replaced by any other "not in b" value
Your original implementation requires a full scan of the elements in B for each element in A, making it O(len(A)*len(B))
. The above code requires one full scan of B to generate the dict Bset. By using a dict, you effectively make the lookup of each element in B constant for each element of A, making the operation O(len(A)+len(B))
. If this is still too slow, then worry about making the above function run on multiple cores.
Edit: I've also modified your indexing slightly. Matlab uses 0 because all of its arrays start at index 1. Python/numpy start arrays at 0, so if you're data set looks like this
A = [2378, 2378, 2378, 2378]
B = [2378, 2379]
and you return 0 for no element, then your results will exclude all elements of A. The above routine returns None
for no index instead of 0. Returning -1 is an option, but Python will interpret that to be the last element in the array. None
will raise an exception if it's used as an index into the array. If you'd like different behavior, change the second argument in the Bind.get(item,None)
expression to the value you want returned.
Solution 2:
sfstewman's excellent answer most likely solved the issue for you.
I'd just like to add how you can achieve the same exclusively in numpy.
I make use of numpy's unique an in1d functions.
B_unique_sorted, B_idx = np.unique(B, return_index=True)
B_in_A_bool = np.in1d(B_unique_sorted, A, assume_unique=True)
-
B_unique_sorted
contains the unique values inB
sorted. -
B_idx
holds for these values the indices into the originalB
. -
B_in_A_bool
is a boolean array the size ofB_unique_sorted
that stores whether a value inB_unique_sorted
is inA
.
Note: I need to look for (unique vals from B) in A because I need the output to be returned with respect toB_idx
Note: I assume thatA
is already unique.
Now you can use B_in_A_bool
to either get the common vals
B_unique_sorted[B_in_A_bool]
and their respective indices in the original B
B_idx[B_in_A_bool]
Finally, I assume that this is significantly faster than the pure Python for-loop although I didn't test it.
Solution 3:
Try the ismember
library.
pip install ismember
Simple example:
# Import library
from ismember import ismember
import numpy as np
# data
A = np.array([3,4,4,3,6])
B = np.array([2,5,2,6,3])
# Lookup
Iloc,idx = ismember(A, B)
# Iloc is boolean defining existence of d in d_unique
print(Iloc)
# [ True False False True True]
# indexes of d_unique that exists in d
print(idx)
# [4 4 3]
print(B[idx])
# [3 3 6]
print(A[Iloc])
# [3 3 6]
# These vectors will match
A[Iloc]==B[idx]
Speed check:
from ismember import ismember
from datetime import datetime
t1=[]
t2=[]
# Create some random vectors
ns = np.random.randint(10,10000,1000)
for n in ns:
a_vec = np.random.randint(0,100,n)
b_vec = np.random.randint(0,100,n)
# Run stack version
start = datetime.now()
out1=ismember_stack(a_vec, b_vec)
end = datetime.now()
t1.append(end - start)
# Run ismember
start = datetime.now()
out2=ismember(a_vec, b_vec)
end = datetime.now()
t2.append(end - start)
print(np.sum(t1))
# 0:00:07.778331
print(np.sum(t2))
# 0:00:04.609801
# %%
def ismember_stack(a, b):
bind = {}
for i, elt in enumerate(b):
if elt not in bind:
bind[elt] = i
return [bind.get(itm, None) for itm in a] # None can be replaced by any other "not in b" value
The ismember
function from pypi is almost 2x faster.
Large vectors, eg 700000 elements:
from ismember import ismember
from datetime import datetime
A = np.random.randint(0,100,700000)
B = np.random.randint(0,100,700000)
# Lookup
start = datetime.now()
Iloc,idx = ismember(A, B)
end = datetime.now()
# Print time
print(end-start)
# 0:00:01.194801
Solution 4:
Try using a list comprehension;
In [1]: import numpy as np
In [2]: A = np.array([3,4,4,3,6])
In [3]: B = np.array([2,5,2,6,3])
In [4]: [x for x in A if not x in B]
Out[4]: [4, 4]
Generally, list comprehensions are much faster than for-loops.
To get an equal length-list;
In [19]: map(lambda x: x if x not in B else False, A)
Out[19]: [False, 4, 4, False, False]
This is quite fast for small datasets:
In [20]: C = np.arange(10000)
In [21]: D = np.arange(15000, 25000)
In [22]: %timeit map(lambda x: x if x not in D else False, C)
1 loops, best of 3: 756 ms per loop
For large datasets, you could try using a multiprocessing.Pool.map()
to speed up the operation.
Solution 5:
Here is the exact MATLAB equivalent that returns both the output arguments [Lia, Locb] that match MATLAB except in Python 0 is also a valid index. So, this function doesn't return the 0s. It essentially returns Locb(Locb>0). The performance is also equivalent to MATLAB.
def ismember(a_vec, b_vec):
""" MATLAB equivalent ismember function """
bool_ind = np.isin(a_vec,b_vec)
common = a[bool_ind]
common_unique, common_inv = np.unique(common, return_inverse=True) # common = common_unique[common_inv]
b_unique, b_ind = np.unique(b_vec, return_index=True) # b_unique = b_vec[b_ind]
common_ind = b_ind[np.isin(b_unique, common_unique, assume_unique=True)]
return bool_ind, common_ind[common_inv]
An alternate implementation that is a bit (~5x) slower but doesn't use the unique function is here:
def ismember(a_vec, b_vec):
''' MATLAB equivalent ismember function. Slower than above implementation'''
b_dict = {b_vec[i]: i for i in range(0, len(b_vec))}
indices = [b_dict.get(x) for x in a_vec if b_dict.get(x) is not None]
booleans = np.in1d(a_vec, b_vec)
return booleans, np.array(indices, dtype=int)