Expectation of Last Remaining Container
Solution 1:
Finding the exact answer may not be feasible for 100 containers, I think. I managed to compute up to 5 containers using recurrence and a computer. The following python code generates the recurrence for 5 containers with the boundary conditions:
def g(n):
bac = 'f'+str(n)+'('+','.join(['x'+str(i) for i in xrange(1,n+1)])+')'
if n == 2:
print 'f2(0,x2)==x2'
print 'f2(x1,0)==x1'
print 'f2(x1,x2)==(f2(x1-1,x2)+f2(x1,x2-1))/2'
return
a = []
for i in xrange(1,n+1):
print bac.replace('x'+str(i), '0')+ '=='+bac.replace('x'+str(i), '').replace(',,', ',').replace('(,', '(').replace(',)',')').replace('f'+str(n),'f'+str(n-1))
a = []
for i in xrange(1,n+1):
a.append(bac.replace('x'+str(i), 'x'+str(i)+'-1'))
print bac+'==('+'+'.join(a)+')/'+str(n)
return g(n-1)
g(5)
which gives the recurrence
f5(0,x2,x3,x4,x5)==f4(x2,x3,x4,x5)
f5(x1,0,x3,x4,x5)==f4(x1,x3,x4,x5)
f5(x1,x2,0,x4,x5)==f4(x1,x2,x4,x5)
f5(x1,x2,x3,0,x5)==f4(x1,x2,x3,x5)
f5(x1,x2,x3,x4,0)==f4(x1,x2,x3,x4)
f5(x1,x2,x3,x4,x5)==(f5(x1-1,x2,x3,x4,x5)+f5(x1,x2-1,x3,x4,x5)+f5(x1,x2,x3-1,x4,x5)+f5(x1,x2,x3,x4-1,x5)+f5(x1,x2,x3,x4,x5-1))/5
f4(0,x2,x3,x4)==f3(x2,x3,x4)
f4(x1,0,x3,x4)==f3(x1,x3,x4)
f4(x1,x2,0,x4)==f3(x1,x2,x4)
f4(x1,x2,x3,0)==f3(x1,x2,x3)
f4(x1,x2,x3,x4)==(f4(x1-1,x2,x3,x4)+f4(x1,x2-1,x3,x4)+f4(x1,x2,x3-1,x4)+f4(x1,x2,x3,x4-1))/4
f3(0,x2,x3)==f2(x2,x3)
f3(x1,0,x3)==f2(x1,x3)
f3(x1,x2,0)==f2(x1,x2)
f3(x1,x2,x3)==(f3(x1-1,x2,x3)+f3(x1,x2-1,x3)+f3(x1,x2,x3-1))/3
f2(0,x2)==x2
f2(x1,0)==x1
f2(x1,x2)==(f2(x1-1,x2)+f2(x1,x2-1))/2
which can be input to friCAS and we can compute values like f5(1,2,3,4,5).
Here are the answers for number of containers being 2,3,4,5:
\begin{align*} \frac{3}{2}, \frac{125}{72}, \frac{157885}{82944}, \frac{685466694095183}{335923200000000} \end{align*}
And for 100 containers, a monte-carlo simulation gives an answer close to $5.6$
Solution 2:
EDIT This answer is valid only in the assumption that the probability of taking a sip from a bottle is proportional to the number of sips remaining.
Let $\alpha$ be the number of ways we can arrange all the sips (even counting the one in the end that are not taken)
$$\alpha = \frac{(\sum\limits_{i=1}^{100} i)!}{\prod\limits_{i=1}^{100} (i!)} $$
(there are $\sum\limits_{i=1}^{100} i$ sips, and for the bottle $i$, $i!$ sips are "identical")
Let $N(m)$ be the number of ways to arrange all sips in a way that exactly $m$ sips of one bottle remain in the end is :
$$N(m) = \sum\limits_{l=m}^{100} \frac{(C_l^m) m! (\sum\limits_{i=1}^{100}i - l) (\sum\limits_{i=1}^{100}i -m -1)!}{\prod\limits_{i=1}^{100} (i!)}$$
(To understand the formula, you have to work backward. Consider the case where the bottle $l$ is the last bottle. Then there are $(C_l^m)$ ways to select the $m$ sips from that bottle that are taken last, and there are $m!$ ways to order them. The sip before the last one can not be from bottle $l$ since there are exactly $m$ sips left, hence the factor $(\sum\limits_{i=1}^{100} - l)$. After that, there are $(\sum\limits_{i=1}^{100}i -m -1)$ sips that can be arranged in any way.)
Let $P(m)$ be the probability of having exactly $m$ sips in the last bottle.
$$P(m) = \frac{N(m)}{\alpha} = \sum\limits_{l=m}^{100} \frac{(C_l^m)m!(\sum\limits_{i=1}^{100}i - l) (\sum\limits_{i=1}^{100}i -m -1)!}{(\sum\limits_{i=1}^{100} i)!}$$
Now, the expected number of remaining sips in the last bottle is only :
$E = \sum\limits_{m = 1}^{100} m P(m)$