Unit sphere in $L^p([0,1])$ is not compact.

One way to do this is to produce a sequence $(u_n)_n$ of functions in the unit ball of $L^p(0,1)$ such that $\|u_i - u_j \|_{L^p} \ge c$ for some $c > 0$, all $i \ne j$. Then no subsequence can converge. You can get such a sequence by defining $$ u_j(x) = \begin{cases} 2^{k/p}\quad (\frac{\ell}{2^k} \le x \le \frac{\ell+1}{2^k}\\ 0 \quad \text{otherwise} \end{cases} $$ if $j = 2^k + \ell$ and $0 \le \ell < 2^k$, with $k = 0, \, 1, \, 2, \dots$..


Consider $$ f_n := n\chi_{[0,1/n]} \in L^p[0,1] $$ Then if $n<m$, $$ \|f_n - f_m\|_p^p = \int_0^{1/m} (m-n)^pdt + \int_{1/m}^{1/n} n^pdt \geq \frac{(m-n)^p}{m} $$ Hence if $p\geq 1$, this sequence cannot have a convergent subsequence.