Why is using update on a lm inside a grouped data.table losing its model data?
Solution 1:
This is not an answer, but is too long for a comment
The .Environment
for the terms component is identical for each resulting model
e1 <- attr(fit[['V1']][[1]]$terms, '.Environment')
e2 <- attr(fit[['V1']][[2]]$terms, '.Environment')
e3 <- attr(fit[['V1']][[3]]$terms, '.Environment')
identical(e1,e2)
## TRUE
identical(e2, e3)
## TRUE
It appears that data.table
is using the same bit of memory (my non-technical term) for
each evaluation of j
by group (which is efficient). However when update
is called, it is using this to refit the model. This will contain the values from the last group.
So, if you fudge this, it will work
fit = DT[, { xx <-list2env(copy(.SD))
mymodel <-lm(Sepal.Length ~ Sepal.Width + Petal.Length)
attr(mymodel$terms, '.Environment') <- xx
list(list(mymodel))}, by= 'Species']
lfit2 <- fit[, list(list(update(V1[[1]], ~.-Sepal.Width))), by = Species]
lfit2[,lapply(V1,nobs)]
V1 V2 V3
1: 41 39 42
# using your exact diagnostic coding.
lfit2[,nobs(V1[[1]]),by = Species]
Species V1
1: setosa 41
2: versicolor 39
3: virginica 42
not a long term solution, but at least a workaround.