What does 'corrupted double-linked list' mean

I have found the answer to my question myself:)

So what I didn't understand was how the glibc could differentiate between a Segfault and a corrupted double-linked list, because according to my understanding, from perspective of glibc they should look like the same thing. Because if I implement a double-linked list inside my program, how could the glibc possibly know that this is a double-linked list, instead of any other struct? It probably can't, so thats why i was confused.

Now I've looked at malloc/malloc.c inside the glibc's code, and I see the following:

1543 /* Take a chunk off a bin list */
1544 #define unlink(P, BK, FD) {                                            \
1545   FD = P->fd;                                                          \
1546   BK = P->bk;                                                          \
1547   if (__builtin_expect (FD->bk != P || BK->fd != P, 0))                \
1548     malloc_printerr (check_action, "corrupted double-linked list", P); \
1549   else {                                                               \
1550     FD->bk = BK;                                                       \
1551     BK->fd = FD;                                                       \

So now this suddenly makes sense. The reason why glibc can know that this is a double-linked list is because the list is part of glibc itself. I've been confused because I thought glibc can somehow detect that some programming is building a double-linked list, which I wouldn't understand how that works. But if this double-linked list that it is talking about, is part of glibc itself, of course it can know it's a double-linked list.

I still don't know what has triggered this error. But at least I understand the difference between corrupted double-linked list and a Segfault, and how the glibc can know this struct is supposed to be a double-linked list:)


Heap overflow should be blame (but not always) for corrupted double-linked list, malloc(): memory corruption, double free or corruption (!prev)-like glibc warnings.

It should be reproduced by the following code:

#include <vector>

using std::vector;


int main(int argc, const char *argv[])
{
    int *p = new int[3];
    vector<int> vec;
    vec.resize(100);
    p[6] = 1024;
    delete[] p;
    return 0;
}

if compiled using g++ (4.5.4):

$ ./heapoverflow
*** glibc detected *** ./heapoverflow: double free or corruption (!prev): 0x0000000001263030 ***
======= Backtrace: =========
/lib64/libc.so.6(+0x7af26)[0x7f853f5d3f26]
./heapoverflow[0x40138e]
./heapoverflow[0x400d9c]
./heapoverflow[0x400bd9]
./heapoverflow[0x400aa6]
./heapoverflow[0x400a26]
/lib64/libc.so.6(__libc_start_main+0xfd)[0x7f853f57b4bd]
./heapoverflow[0x4008f9]
======= Memory map: ========
00400000-00403000 r-xp 00000000 08:02 2150398851                         /data1/home/mckelvin/heapoverflow
00602000-00603000 r--p 00002000 08:02 2150398851                         /data1/home/mckelvin/heapoverflow
00603000-00604000 rw-p 00003000 08:02 2150398851                         /data1/home/mckelvin/heapoverflow
01263000-01284000 rw-p 00000000 00:00 0                                  [heap]
7f853f559000-7f853f6fa000 r-xp 00000000 09:01 201329536                  /lib64/libc-2.15.so
7f853f6fa000-7f853f8fa000 ---p 001a1000 09:01 201329536                  /lib64/libc-2.15.so
7f853f8fa000-7f853f8fe000 r--p 001a1000 09:01 201329536                  /lib64/libc-2.15.so
7f853f8fe000-7f853f900000 rw-p 001a5000 09:01 201329536                  /lib64/libc-2.15.so
7f853f900000-7f853f904000 rw-p 00000000 00:00 0
7f853f904000-7f853f919000 r-xp 00000000 09:01 74726670                   /usr/lib64/gcc/x86_64-pc-linux-gnu/4.8.1/libgcc_s.so.1
7f853f919000-7f853fb19000 ---p 00015000 09:01 74726670                   /usr/lib64/gcc/x86_64-pc-linux-gnu/4.8.1/libgcc_s.so.1
7f853fb19000-7f853fb1a000 r--p 00015000 09:01 74726670                   /usr/lib64/gcc/x86_64-pc-linux-gnu/4.8.1/libgcc_s.so.1
7f853fb1a000-7f853fb1b000 rw-p 00016000 09:01 74726670                   /usr/lib64/gcc/x86_64-pc-linux-gnu/4.8.1/libgcc_s.so.1
7f853fb1b000-7f853fc11000 r-xp 00000000 09:01 201329538                  /lib64/libm-2.15.so
7f853fc11000-7f853fe10000 ---p 000f6000 09:01 201329538                  /lib64/libm-2.15.so
7f853fe10000-7f853fe11000 r--p 000f5000 09:01 201329538                  /lib64/libm-2.15.so
7f853fe11000-7f853fe12000 rw-p 000f6000 09:01 201329538                  /lib64/libm-2.15.so
7f853fe12000-7f853fefc000 r-xp 00000000 09:01 74726678                   /usr/lib64/gcc/x86_64-pc-linux-gnu/4.8.1/libstdc++.so.6.0.18
7f853fefc000-7f85400fb000 ---p 000ea000 09:01 74726678                   /usr/lib64/gcc/x86_64-pc-linux-gnu/4.8.1/libstdc++.so.6.0.18
7f85400fb000-7f8540103000 r--p 000e9000 09:01 74726678                   /usr/lib64/gcc/x86_64-pc-linux-gnu/4.8.1/libstdc++.so.6.0.18
7f8540103000-7f8540105000 rw-p 000f1000 09:01 74726678                   /usr/lib64/gcc/x86_64-pc-linux-gnu/4.8.1/libstdc++.so.6.0.18
7f8540105000-7f854011a000 rw-p 00000000 00:00 0
7f854011a000-7f854013c000 r-xp 00000000 09:01 201328977                  /lib64/ld-2.15.so
7f854031c000-7f8540321000 rw-p 00000000 00:00 0
7f8540339000-7f854033b000 rw-p 00000000 00:00 0
7f854033b000-7f854033c000 r--p 00021000 09:01 201328977                  /lib64/ld-2.15.so
7f854033c000-7f854033d000 rw-p 00022000 09:01 201328977                  /lib64/ld-2.15.so
7f854033d000-7f854033e000 rw-p 00000000 00:00 0
7fff92922000-7fff92943000 rw-p 00000000 00:00 0                          [stack]
7fff929ff000-7fff92a00000 r-xp 00000000 00:00 0                          [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0                  [vsyscall]
[1]    18379 abort      ./heapoverflow

and if compiled using clang++(6.0 (clang-600.0.56)):

$  ./heapoverflow
[1]    96277 segmentation fault  ./heapoverflow

If you thought you might have written a bug like that, here is some hints to trace it out.

First, compile the code with debug flag(-g):

g++ -g foo.cpp

And then, run it using valgrind:

$ valgrind ./a.out
==12693== Memcheck, a memory error detector
==12693== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==12693== Using Valgrind-3.10.1 and LibVEX; rerun with -h for copyright info
==12693== Command: ./a.out
==12693==
==12693== Invalid write of size 4
==12693==    at 0x400A25: main (foo.cpp:11)
==12693==  Address 0x5a1c058 is 12 bytes after a block of size 12 alloc'd
==12693==    at 0x4C2B800: operator new[](unsigned long) (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==12693==    by 0x4009F6: main (foo.cpp:8)
==12693==
==12693==
==12693== HEAP SUMMARY:
==12693==     in use at exit: 0 bytes in 0 blocks
==12693==   total heap usage: 2 allocs, 2 frees, 412 bytes allocated
==12693==
==12693== All heap blocks were freed -- no leaks are possible
==12693==
==12693== For counts of detected and suppressed errors, rerun with: -v
==12693== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

The bug is located in ==12693== at 0x400A25: main (foo.cpp:11)


This might be due to various reasons, people have mentioned other possibilities and I add my case:

I got this error when using multi-threading (both std::pthread and std::thread) and the error occurred because I forgot to lock a variable which multiple threads may change at the same time. This is a runtime error and comes randomly in some runs but not all because ... you know accident between two threads is random.

That variable in my case was a global std::vector which I tried to push_back() something into in a function called by threads.. and then I used a std::mutex and never got this error again.

may help some


For anyone who is looking for solutions here, I had a similar issue with C++: malloc(): smallbin double linked list corrupted:

This was due to a function not returning a value it was supposed to.

std::vector<Object> generateStuff(std::vector<Object>& target> {
  std::vector<Object> returnValue;
  editStuff(target);
  // RETURN MISSING
}

Don't know why this was able to compile after all. Probably there was a warning about it.