I know the series, $4-{4\over3}+{4\over5}-{4\over7}...$ converges to $\pi$ but I have heard many people say that while this is a classic example, there are series that converge much faster. Does anyone know of any?


The series $$ \sum_{n=0}^{\infty} \frac{(2n)!!}{(2n+1)!!} \left(\frac{1}{2}\right)^n = \frac{\pi}{2}$$ converges quickly. Here $!!$ is the double factorial defined by $0!! = 1!! = 1$ and $n!! = n (n-2)!!$

This is series is not too hard to derive. Start by defining $$f(t) = \sum _{n=0}^{\infty } \frac{(-1)^n}{(2n+1)}t^n.$$ Note that $f(1) = \pi/4$ is the series you referenced. Now we take what is called the Euler Transform of the series which gives us $$ \left(\frac{1}{1-t}\right)f\left(\frac{t}{1-t}\right) = \sum _{n=0}^{\infty } \left(\sum _{k=0}^n {n \choose k}\frac{(-1)^k}{(2k+1)}\right)t^n.$$

Now $$\sum _{k=0}^n {n \choose k}\frac{(-1)^k}{(2k+1)} = \frac{(2n)!!}{(2n+1)!!}$$ for hints on how to prove this identity see Proving a binomial sum identity $\sum _{k=0}^n \binom nk \frac{(-1)^k}{2k+1} = \frac{(2n)!!}{(2n+1)!!}$. Now put $t = 1/2$ and the identity follows. Showing the error term for the nth partial sum is less than $(1/2)^n$ is not too difficult.


The BBP formula is another nice one: $$ \pi = \sum_{k=0}^\infty \left[ \frac{1}{16^k} \! \left( \frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right) \right] $$ It can be used to compute the $n$th hexadecimal digit of $\pi$ without computing the preceding $n{-}1$ digits.