How Switch case Statement Implemented or works internally?
I read somewhere that the switch
statement uses "Binary Search" or some sorting techniques to exactly choose the correct case and this increases its performance compared to else-if ladder.
And also if we give the case in order does the switch work faster? is it so? Can you add your valuable suggestions on this?
We discussed here about the same and planned to post as a question.
It's actually up to the compiler how a switch
statement is realized in code.
However, my understanding is that when it's suitable (that is, relatively dense cases), a jump table is used.
That would mean that something like:
switch(i) {
case 0: doZero(); break;
case 1: doOne();
case 2: doTwo(); break;
default: doDefault();
}
Would end up getting compiled to something like (horrible pseudo-assembler, but it should be clear, I hope).
load i into REG
compare REG to 2
if greater, jmp to DEFAULT
compare REG to 0
if less jmp to DEFAULT
jmp to table[REG]
data table
ZERO
ONE
TWO
end data
ZERO: call doZero
jmp END
ONE: call doOne
TWO: call doTwo
jmp END
DEFAULT: call doDefault
END:
If that's not the case, there are other possible implementations that allow for some extent of "better than a a sequence of conditionals".
How swtich is implemented depends on what values you have. For values that are close in range, the compiler will generally generate a jump table. If the values are far apart, it will generate a linked branch, using something like a binary search to find the right value.
The order of the switch statements as such doesn't matter, it will do the same thing whether you have the order in ascending, descending or random order - do what makes most sense with regard to what you want to do.
If nothing else, switch is usually a lot easier to read than an if-else sequence.
On some googling I found some interestin link and planned to post as an answer to my question. http://www.codeproject.com/Articles/100473/Something-You-May-Not-Know-About-the-Switch-Statem
Comments are welcome..