Show that $\mathbb{Q}^+/\mathbb{Z}^+$ cannot be decomposed into the direct sum of cyclic groups.
Some comments:
You are conflating elements of $\mathbb{Q}$ with elements of $\mathbb{Q}/\mathbb{Z}$. The latter are congruence classes modulo $\mathbb{Z}$. Better to keep them straight.
You assert that if $\mathbb{Q}=\oplus H_k$, and $\frac{a}{b}+\mathbb{Z}$ is a generator for one of the direct summands, then there is a direct summand that contains $\frac{1}{b}+\mathbb{Z}$; you have no warrant for that assertion; why can't $\frac{1}{b}+\mathbb{Z}$ have more than one nontrivial coordinate in the direct sum? Better: show that $\frac{1}{b}+\mathbb{Z}\in\langle \frac{a}{b}+\mathbb{Z}\rangle$, by using the fact that $\gcd(a,b)=1$. That will prove that you can always select a generator of the form $\frac{1}{b}+\mathbb{Z}$, which seems to be what you are trying to do in the first place.
-
Your argument is murky and way too complex. It is simpler to show that any two nontrivial subgroups of $\mathbb{Q}/\mathbb{Z}$ must intersect, and so any direct sum decomposition $A\oplus B$ of $\mathbb{Q}/\mathbb{Z}$ must have $A$ or $B$ trivial. Then use your argument to show that the group $\mathbb{Q}/\mathbb{Z}$ is not cyclic in order to finish the proof.Actually, this suggestion works for $\mathbb{Q}$ but no necesarily for $\mathbb{Q}/\mathbb{Z}$; for instance, the Prufer $p$-groups are subgroups of $\mathbb{Q}/\mathbb{Z}$ but they intersect trivially for distinct primes. Sorry about that.Instead, use a similar argument to what you had before: if $\mathbb{Q}/\mathbb{Z} = \bigoplus H_k$, select $b_k\in\mathbb{Z}$, greater than $1$ without loss of generality (since $b_k=1$ means the subgroup generated by $\frac{1}{b_k}+\mathbb{Z}$ is trivial and can be omitted), such that $\frac{1}{b_k}+\mathbb{Z}$ generates $H_k$. Then select a particular direct summand, say $H_1$; consider the element $\frac{1}{b_1^2}+\mathbb{Z}$ of $\mathbb{Q}/\mathbb{Z}$. Since it is an element of $\mathbb{Q}/\mathbb{Z}=\oplus H_k$, then we can express it as: $$\frac{1}{b_1^2}+\mathbb{Z} = \sum_k\left(\frac{a_k}{b_k}+\mathbb{Z}\right)$$ for some $a_k\in\mathbb{Z}$, with $b_k|a_k$ for almost all $k$ (since almost all components must be trivial). Then adding it to itself $b_1$ times we get that $$\frac{1}{b_1}+\mathbb{Z}=b_1\left(\frac{1}{b_1^2}+\mathbb{Z}\right) = b_1\sum_k\left(\frac{a_k}{b_k}+\mathbb{Z}\right) = \sum_k\left(\frac{a_kb_1}{b_k}+\mathbb{Z}\right).$$ Therefore, equating components, we get that $b_k|a_kb_1$ for all $k\neq 1$, and $b_1|a_1b_1-1$. But the latter implies $b_1|1$, which is a bit of a problem.
The group $\mathbb{Q}$ is divisible.
A homomorphic image of a divisible group is divisible.
The group $\mathbb{Q}/\mathbb{Z}$ is divisible (by 1 and 2).
A direct summand of a divisible group is divisible (by 2).
No nonzero cyclic group is divisible, because nonzero divisible groups are infinite and $\mathbb{Z}$ is not divisible.
Therefore no nonzero cyclic group is a direct summand of $\mathbb{Q}/\mathbb{Z}$.