Does static constexpr variable inside a function make sense?
If I have a variable inside a function (say, a large array), does it make sense to declare it both static
and constexpr
? constexpr
guarantees that the array is created at compile time, so would the static
be useless?
void f() {
static constexpr int x [] = {
// a few thousand elements
};
// do something with the array
}
Is the static
actually doing anything there in terms of generated code or semantics?
Solution 1:
The short answer is that not only is static
useful, it is pretty well always going to be desired.
First, note that static
and constexpr
are completely independent of each other. static
defines the object's lifetime during execution; constexpr
specifies that the object should be available during compilation. Compilation and execution are disjoint and discontiguous, both in time and space. So once the program is compiled, constexpr
is no longer relevant.
Every variable declared constexpr
is implicitly const
but const
and static
are almost orthogonal (except for the interaction with static const
integers.)
The C++
object model (§1.9) requires that all objects other than bit-fields occupy at least one byte of memory and have addresses; furthermore all such objects observable in a program at a given moment must have distinct addresses (paragraph 6). This does not quite require the compiler to create a new array on the stack for every invocation of a function with a local non-static const array, because the compiler could take refuge in the as-if
principle provided it can prove that no other such object can be observed.
That's not going to be easy to prove, unfortunately, unless the function is trivial (for example, it does not call any other function whose body is not visible within the translation unit) because arrays, more or less by definition, are addresses. So in most cases, the non-static const(expr)
array will have to be recreated on the stack at every invocation, which defeats the point of being able to compute it at compile time.
On the other hand, a local static const
object is shared by all observers, and furthermore may be initialized even if the function it is defined in is never called. So none of the above applies, and a compiler is free not only to generate only a single instance of it; it is free to generate a single instance of it in read-only storage.
So you should definitely use static constexpr
in your example.
However, there is one case where you wouldn't want to use static constexpr
. Unless a constexpr
declared object is either ODR-used or declared static
, the compiler is free to not include it at all. That's pretty useful, because it allows the use of compile-time temporary constexpr
arrays without polluting the compiled program with unnecessary bytes. In that case, you would clearly not want to use static
, since static
is likely to force the object to exist at runtime.
Solution 2:
In addition to given answer, it's worth noting that compiler is not required to initialize constexpr
variable at compile time, knowing that the difference between constexpr
and static constexpr
is that to use static constexpr
you ensure the variable is initialized only once.
Following code demonstrates how constexpr
variable is initialized multiple times (with same value though), while static constexpr
is surely initialized only once.
In addition the code compares the advantage of constexpr
against const
in combination with static
.
#include <iostream>
#include <string>
#include <cassert>
#include <sstream>
const short const_short = 0;
constexpr short constexpr_short = 0;
// print only last 3 address value numbers
const short addr_offset = 3;
// This function will print name, value and address for given parameter
void print_properties(std::string ref_name, const short* param, short offset)
{
// determine initial size of strings
std::string title = "value \\ address of ";
const size_t ref_size = ref_name.size();
const size_t title_size = title.size();
assert(title_size > ref_size);
// create title (resize)
title.append(ref_name);
title.append(" is ");
title.append(title_size - ref_size, ' ');
// extract last 'offset' values from address
std::stringstream addr;
addr << param;
const std::string addr_str = addr.str();
const size_t addr_size = addr_str.size();
assert(addr_size - offset > 0);
// print title / ref value / address at offset
std::cout << title << *param << " " << addr_str.substr(addr_size - offset) << std::endl;
}
// here we test initialization of const variable (runtime)
void const_value(const short counter)
{
static short temp = const_short;
const short const_var = ++temp;
print_properties("const", &const_var, addr_offset);
if (counter)
const_value(counter - 1);
}
// here we test initialization of static variable (runtime)
void static_value(const short counter)
{
static short temp = const_short;
static short static_var = ++temp;
print_properties("static", &static_var, addr_offset);
if (counter)
static_value(counter - 1);
}
// here we test initialization of static const variable (runtime)
void static_const_value(const short counter)
{
static short temp = const_short;
static const short static_var = ++temp;
print_properties("static const", &static_var, addr_offset);
if (counter)
static_const_value(counter - 1);
}
// here we test initialization of constexpr variable (compile time)
void constexpr_value(const short counter)
{
constexpr short constexpr_var = constexpr_short;
print_properties("constexpr", &constexpr_var, addr_offset);
if (counter)
constexpr_value(counter - 1);
}
// here we test initialization of static constexpr variable (compile time)
void static_constexpr_value(const short counter)
{
static constexpr short static_constexpr_var = constexpr_short;
print_properties("static constexpr", &static_constexpr_var, addr_offset);
if (counter)
static_constexpr_value(counter - 1);
}
// final test call this method from main()
void test_static_const()
{
constexpr short counter = 2;
const_value(counter);
std::cout << std::endl;
static_value(counter);
std::cout << std::endl;
static_const_value(counter);
std::cout << std::endl;
constexpr_value(counter);
std::cout << std::endl;
static_constexpr_value(counter);
std::cout << std::endl;
}
Possible program output:
value \ address of const is 1 564
value \ address of const is 2 3D4
value \ address of const is 3 244
value \ address of static is 1 C58
value \ address of static is 1 C58
value \ address of static is 1 C58
value \ address of static const is 1 C64
value \ address of static const is 1 C64
value \ address of static const is 1 C64
value \ address of constexpr is 0 564
value \ address of constexpr is 0 3D4
value \ address of constexpr is 0 244
value \ address of static constexpr is 0 EA0
value \ address of static constexpr is 0 EA0
value \ address of static constexpr is 0 EA0
As you can see yourself constexpr
is initilized multiple times (address is not the same) while static
keyword ensures that initialization is performed only once.
Solution 3:
Not making large arrays static
, even when they're constexpr
can have dramatic performance impact and can lead to many missed optimizations. It may slow down your code by orders of magnitude. Your variables are still local and the compiler may decide to initialize them at runtime instead of storing them as data in the executable.
Consider the following example:
template <int N>
void foo();
void bar(int n)
{
// array of four function pointers to void(void)
constexpr void(*table[])(void) {
&foo<0>,
&foo<1>,
&foo<2>,
&foo<3>
};
// look up function pointer and call it
table[n]();
}
You probably expect gcc-10 -O3
to compile bar()
to a jmp
to an address which it fetches from a table, but that is not what happens:
bar(int):
mov eax, OFFSET FLAT:_Z3fooILi0EEvv
movsx rdi, edi
movq xmm0, rax
mov eax, OFFSET FLAT:_Z3fooILi2EEvv
movhps xmm0, QWORD PTR .LC0[rip]
movaps XMMWORD PTR [rsp-40], xmm0
movq xmm0, rax
movhps xmm0, QWORD PTR .LC1[rip]
movaps XMMWORD PTR [rsp-24], xmm0
jmp [QWORD PTR [rsp-40+rdi*8]]
.LC0:
.quad void foo<1>()
.LC1:
.quad void foo<3>()
This is because GCC decides not to store table
in the executable's data section, but instead initializes a local variable with its contents every time the function runs. In fact, if we remove constexpr
here, the compiled binary is 100% identical.
This can easily be 10x slower than the following code:
template <int N>
void foo();
void bar(int n)
{
static constexpr void(*table[])(void) {
&foo<0>,
&foo<1>,
&foo<2>,
&foo<3>
};
table[n]();
}
Our only change is that we have made table
static
, but the impact is enormous:
bar(int):
movsx rdi, edi
jmp [QWORD PTR bar(int)::table[0+rdi*8]]
bar(int)::table:
.quad void foo<0>()
.quad void foo<1>()
.quad void foo<2>()
.quad void foo<3>()
In conclusion, never make your lookup tables local variables, even if they're constexpr
. Clang actually optimizes such lookup tables well, but other compilers don't. See Compiler Explorer for a live example.