Calculating the Zeroes of the Riemann-Zeta function
Wikipedia states that
The Riemann zeta function $\zeta(s)$ is defined for all complex numbers $s \neq 1$. It has zeros at the negative even integers (i.e. at $s = −2, −4, −6, ...)$. These are called the trivial zeros. The Riemann hypothesis is concerned with the non-trivial zeros, and states that: The real part of any non-trivial zero of the Riemann zeta function is $\frac{1}{2}$.
What does it mean to say that $\zeta(s)$ has a $\text{trivial}$ zero and a $\text{non-trivial}$ zero. I know that $$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$ what wikipedia claims it that $\zeta(-2) = \sum_{n=1}^{\infty} n^{2} = 0$ which looks absurd.
My question is can somebody show me how to calculate a zero for the $\zeta$ function.
You are going to need a bit of knowledge about complex analysis before you can really follow the answer, but if you start with a function defined as a series, it is frequently possible to extend that function to a much larger part of the complex plane.
For example, if you define $f(x)=1+x+x^2+x^3+...$ then $f$ can be extended to $\mathbb C\setminus \{1\}$ as $g(x)=\frac{1}{1-x}$. Clearly, it is "absurd" to say that $f(2)=-1$, but $g(2)=-1$ makes sense.
The Riemann zeta function is initially defined as a series, but it can be "analytically extended" to $\mathbb C\setminus \{1\}$. The details of this really require complex analysis.
Calculating the non-trivial zeroes of the Riemann zeta function is a whole entire field of mathematics.
Copied from Wikipedia:
For all $s\in\mathbb{C}\setminus\{1\}$ the integral relation $$\zeta(s) = \frac{2^{s-1}}{s-1}-2^s\!\int_0^{\infty}\!\!\!\frac{\sin(s\arctan t)}{(1+t^2)^\frac{s}{2}(\mathrm{e}^{\pi\,t}+1)}\,\mathrm{d}t,$$ holds true, which may be used for a numerical evaluation of the Zeta-function. http://mo.mathematik.uni-stuttgart.de/kurse/kurs5/seite19.html