How to replace NaN values by Zeroes in a column of a Pandas Dataframe?
I have a Pandas Dataframe as below:
itm Date Amount
67 420 2012-09-30 00:00:00 65211
68 421 2012-09-09 00:00:00 29424
69 421 2012-09-16 00:00:00 29877
70 421 2012-09-23 00:00:00 30990
71 421 2012-09-30 00:00:00 61303
72 485 2012-09-09 00:00:00 71781
73 485 2012-09-16 00:00:00 NaN
74 485 2012-09-23 00:00:00 11072
75 485 2012-09-30 00:00:00 113702
76 489 2012-09-09 00:00:00 64731
77 489 2012-09-16 00:00:00 NaN
When I try to apply a function to the Amount column, I get the following error:
ValueError: cannot convert float NaN to integer
I have tried applying a function using .isnan from the Math Module I have tried the pandas .replace attribute I tried the .sparse data attribute from pandas 0.9 I have also tried if NaN == NaN statement in a function. I have also looked at this article How do I replace NA values with zeros in an R dataframe? whilst looking at some other articles. All the methods I have tried have not worked or do not recognise NaN. Any Hints or solutions would be appreciated.
I believe DataFrame.fillna()
will do this for you.
Link to Docs for a dataframe and for a Series.
Example:
In [7]: df
Out[7]:
0 1
0 NaN NaN
1 -0.494375 0.570994
2 NaN NaN
3 1.876360 -0.229738
4 NaN NaN
In [8]: df.fillna(0)
Out[8]:
0 1
0 0.000000 0.000000
1 -0.494375 0.570994
2 0.000000 0.000000
3 1.876360 -0.229738
4 0.000000 0.000000
To fill the NaNs in only one column, select just that column. in this case I'm using inplace=True to actually change the contents of df.
In [12]: df[1].fillna(0, inplace=True)
Out[12]:
0 0.000000
1 0.570994
2 0.000000
3 -0.229738
4 0.000000
Name: 1
In [13]: df
Out[13]:
0 1
0 NaN 0.000000
1 -0.494375 0.570994
2 NaN 0.000000
3 1.876360 -0.229738
4 NaN 0.000000
EDIT:
To avoid a SettingWithCopyWarning
, use the built in column-specific functionality:
df.fillna({1:0}, inplace=True)
It is not guaranteed that the slicing returns a view or a copy. You can do
df['column'] = df['column'].fillna(value)
You could use replace
to change NaN
to 0
:
import pandas as pd
import numpy as np
# for column
df['column'] = df['column'].replace(np.nan, 0)
# for whole dataframe
df = df.replace(np.nan, 0)
# inplace
df.replace(np.nan, 0, inplace=True)
The below code worked for me.
import pandas
df = pandas.read_csv('somefile.txt')
df = df.fillna(0)